Carbon nanotube field-effect transistors (CNFETs) utilize an array of carbon nanotubes as the channel material instead of bulk silicon in the traditional MOSFET structure, which holds great promise for the future of integrated circuits. In this paper, a full adder cell based on a parallel design using CNFETs is presented. The main objective of designing this full adder cell is to reduce critical path delay in CNFET-based adder circuits. The proposed design positively affects speed and power consumption by shortening the data path. In order to evaluate the proposed design, several simulations were performed with different load capacitors, frequencies, and temperatures using HSPICE in 32-nm CMOS and 32-nm CNFET technologies. The proposed full adder cells were compared with five other full adder cells using 4-bit ripple carry adder (RCA) and 8-bit RCA circuits with power consumption, speed, and power delay product parameters. The obtained results indicate that the proposed design is faster than other designs due to a shortened data path. The results of the simulations confirm the higher efficiency of the proposed full adder cell with respect to other designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.