The aim of the study was to investigate the therapeutic effect and mechanism of proanthocyanidins from grape seeds (GSPE) in the treatment of ulcerative colitis (UC). Rats were intragastrically administered different doses of GSPE (100, 200, and 400 mg/kg) per day for 7 days after UC was twice-induced by intracolonic injection of 2,4,6-trinitrobenzene sulfonic acid (TNBS)dissolved in 50% ethanol. Sulfasalazine (SASP) at 200 mg/kg was used as a positive control drug. Macroscopic and microscopic damage scores and changes in weight/length ratio (mg/mm) of colon segments were analyzed. The levels of malonyldialdehyde (MDA), interleukin (IL)-1beta, IL-2, IL-4, and myeloperoxidase (MPO) activity in the colon tissues and MPO activity in the serum were all measured by biochemical methods or double antibody sandwich ELISA methods. Compared with the TNBS control group, GSPE treatment facilitated recovery of pathologic changes in the colon after insult with TNBS, as demonstrated by increased body weight (p < 0.01) and decreased colonic weight/length ratio (p < 0.01); GSPE also notably reduced the colonic macroscopic and microscopic damage scores (p < 0.01). The MPO activity in colon tissues and serum of rats treated with GSPE was significantly lower than that in the TNBS control group. The MDA and IL-1beta levels of colon tissues were also decreased in GSPE groups. The intestinal antiinflammatory effect of GSPE was accompanied by a significant improvement of IL-2 and IL-4 levels in the colon tissues of rats in the high-dose GSPE group (p < 0.05). Compared with the SASP group, GSPE groups had no significant difference in the therapeutic effect (p > 0.05). GSPE exerts a beneficial antiinflammatory effect in the acute phase of TNBS-induced colitis in rats by downregulating some of the mediators involved in the intestinal inflammatory response, inhibiting inflammatory cell infiltration and antioxidation damage, promoting damaged tissue repair to improve colonic oxidative stress, decreasing production of proinflammatory cytokines IL-1beta, and increasing production of antiinflammatory cytokines IL-2 and IL-4.
To elucidate the molecular mechanisms involved in the therapeutic effects of proanthocyanidins from grape seeds (GSPE), we explore whether GSPE regulates the inflammatory response of TNBS-induced colitis in rats at the levels of NF-κB signal transduction pathway. Rats were intragastrically administered of different doses of GSPE (100, 200 and 400 mg·kg−1) per day for seven days after ulcerative colitis (UC) was induced by intracolonic injection of 2,4,6-trinitrobenzenesulfonic acid (TNBS) dissolved in 50% ethanol. Sulfasalazine (SASP) at 400 mg/kg was used as a positive control drug. The expression of nuclear factor-kappa B (NF-κB), phospho-I kappaB-alpha (pIκBα), inhibitor kappa B kinase (IκK) in the colon tissues were all measured by enzyme-linked immunosorbent assay (ELISA) methods. Treatment with GSPE reduced the expression of NF-κB, pIκBα and IκK in the colon. The results of this study show that GSPE exerts beneficial effects in inflammatory bowel disease by inhibition of NF-κB signal transduction pathways.
Ulcerative colitis (UC) is characterized by oxidative and nitrosative stress and neutrophil infiltration. In the present study, we aimed to investigate the therapeutic effect of ginsenoside Rd (GRd) in rats with 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced recurrent UC. After UC was twice-induced by intracolonic injection of TNBS, rats were intragastrically administered different doses of GRd per day for 7 days. The colonic lesions and inflammation were evaluated both histologically and biochemically. Compared with the TNBS group, GRd treatment facilitated recovery of pathologic changes in the colon after induction of recurrent UC, as evidenced by a significant reduction of colonic weight/length ratio and macroscopic and microscopic damage scores (p < 0.01). The myeloperoxidase and inducible nitric oxide synthase activities with malonyldialdehyde and nitric oxide levels in colonic tissues were significantly decreased in the GRd group compared with those in the TNBS group (p < 0.01). GRd treatment was associated with remarkably increased superoxide dismutase and glutathione peroxidase activities. Results showed a valuable effect of GRd against TNBS-induced recurrent UC by inhibiting neutrophil infiltration and promoting the antioxidant capacity of the damaged colonic tissue.
Amp-Na exhibits anticancer activities and enhances the antitumor activities of CBP through up-regulation of p21 and inhibition of CDK2 activity in human NSCLC cells SPC-A1. These results suggest that Amp-Na may be applied to enhance the anticancer action of CBP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.