We propose a conceptually simple framework for fast COVID-19 screening in 3D chest CT images. The framework can efficiently predict whether or not a CT scan contains pneumonia while simultaneously identifying pneumonia types between COVID-19 and Interstitial Lung Disease (ILD) caused by other viruses. In the proposed method, two 3D-ResNets are coupled together into a single model for the two above-mentioned tasks via a novel prior-attention strategy. We extend residual learning with the proposed prior-attention mechanism and design a new so-called priorattention residual learning (PARL) block. The model can be easily built by stacking the PARL blocks and trained endto-end using multi-task losses. More specifically, one 3D-ResNet branch is trained as a binary classifier using lung images with and without pneumonia so that it can highlight the lesion areas within the lungs. Simultaneously, inside the PARL blocks, prior-attention maps are generated from this branch and used to guide another branch to learn more discriminative representations for the pneumoniatype classification. Experimental results demonstrate that the proposed framework can significantly improve the performance of COVID-19 screening. Compared to other meth-Manuscript
By analyzing the noise properties of calibrated low-dose Computed Tomography (CT) projection data, it is clearly seen that the data can be regarded as approximately Gaussian distributed with a nonlinear signal-dependent variance. Based on this observation, a penalized weighted least-square (PWLS) smoothing framework is a choice for an optimal solution. It utilizes the prior variance-mean relationship to construct both the weight matrix and the two-dimensional (2D) spatial information as the penalty or regularization operator. Furthermore, a K-L transform is applied along the z (slice) axis to further consider the correlation among different sinograms, resulting in a PWLS smoothing in the K-L domain. As a tool for feature extraction and de-correlation, the K-L transform maximizes the data variance represented by each component and simplifies the task of 3D filtering into 2D spatial process slice by slice. Therefore, by selecting an appropriate number of neighboring slices, the K-L domain PWLS smoothing fully utilizes the prior statistical knowledge and 3D spatial information for an accurate restoration of the noisy low-dose CT projections in an analytical manner. Experimental results demonstrate that the proposed method with appropriate control parameters improves the noise treatment without sacrifice of resolution.
Repeated x-ray computed tomography (CT) scans are often required in several specific applications such as perfusion imaging, image-guided biopsy needle, image-guided intervention, and radiotherapy with noticeable benefits. However, the associated cumulative radiation dose significantly increases as comparison with that used in the conventional CT scan, which has raised major concerns in patients. In this study, to realize radiation dose reduction by reducing the x-ray tube current and exposure time (mAs) in repeated CT scans, we propose a prior-image induced nonlocal (PINL) regularization for statistical iterative reconstruction via the penalized weighted least-squares (PWLS) criteria, which we refer to as “PWLS-PINL”. Specifically, the PINL regularization utilizes the redundant information in the prior image and the weighted least-squares term considers a data-dependent variance estimation, aiming to improve current low-dose image quality. Subsequently, a modified iterative successive over-relaxation algorithm is adopted to optimize the associative objective function. Experimental results on both phantom and patient data show that the present PWLS-PINL method can achieve promising gains over the other existing methods in terms of the noise reduction, low-contrast object detection and edge detail preservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.