Emerging evidence suggests that the peripheral immune system has an active role in the progression of Parkinson's disease (PD). The finding of T‑helper (Th; CD4+) cells infiltrating into the substantia nigra in PD patients demonstrated that Th cells are involved in PD. However, the association between peripheral T‑helper cell sub‑sets (Th1, Th2, Treg and Th17) and the sub‑set balance (Th1/Th2 and Th17/Treg) and PD has remained elusive. In the present study, sixty PD patients of the First Affiliated Hospital of Bengbu Medical College as well as 40 age‑ and environment‑matched healthy individuals were enrolled. The fraction of CD4+ T cells in the peripheral blood was assessed by automated hematology analysis and its sub‑sets (Thl, Th2, Thl7, Treg) were quantified by flow cytometry. The results showed that in the PD group, the proportion of Th1 and Th17 cells was increased, while that of Th2 and Treg cells was decreased. Compared with the control group, the Th1/Th2 and Th17/Treg ratios were significantly enhanced, and shifted towards Th1 and Th17, respectively. Furthermore, this Th1‑type response (Th1/Th2 balance shifting towards Th1) were associated with motor function scores determined by Unified Parkinson's Disease Rating Scale III (UPDRS‑III) scores. However, no correlation was found between the change in the Th17/Treg cell balance (Th17/Treg balance shifting towards Th1) and UPDRS‑III scores. These data supported that chronic immune stimulation, specifically CD4+‑cell sub‑set imbalance, is linked to PD pathobiology and disease severity. CD4+‑cell sub‑sets and their imbalance may therefore represent novel biomarkers or therapeutic targets for PD.
Parkinson's disease (PD) is second only to Alzheimer's disease as the most common and debilitating age-associated neurodegenerative disorder. Currently, no therapy has been shown to unequivocally retard or arrest the progression of the disease. The aim of the present study was to investigate the protective effect of piperine on the 1-methyl-4-phenyl-1,2,3,6‑tetrahydropyridine (MPTP)-induced Parkinson's mouse model. For MPTP treatment, the animals received repeated intraperitoneal injections (i.p.) of MPTP (30 mg/kg) solution for 7 days. Piperine (10 mg/kg) was administered orally for 15 days including 8 days of pretreatment. Motor behavior analysis was conducted with the rotarod test. The Morris water maze (MWM) was used to assess the cognitive learning ability of the mice. A histological examination was subsequently conducted. The results ddemonstrate that piperine treatment attenuated MPTP-induced deficits in motor coordination and cognitive functioning. Piperine also prevented MPTP-induced decreases in the number of tyrosine hydroxylase-positive cells in the substantia nigra. Additionally, piperine reduced the number of activated microglia, expression of cytokine IL-1β, and oxidative stress following MPTP treatment. An anti-apoptotic property of piperine was identified by maintaining the balance of Bcl-2/Bax. In conclusion, the results show that piperine exerts a protective effect on dopaminergic neurons via antioxidant, anti-apoptotic, and anti-inflammatory mechanisms in an MPTP-induced mouse model of PD. Thus, piperine is a potential therapeutic treatment for PD.
Previous studies have shown that irinotecan (CPT‑11) impairs chemotherapy‑induced apoptosis by activating nuclear factor‑κB (NF‑κB) and a number of strategies have been employed to augment chemosensitivity through the suppression of NF‑κB activation. Berberine, a botanical alkaloid, was reported to enhance chemosensitivity to 5‑fluorouracil and doxorubicin by suppressing NF‑κB activation. In the present study, the effect of berberine on CPT‑11‑induced apoptosis was investigated through the inhibition of NF‑κB. Inhibition of NF‑κB activation by p65 small interfering RNA was shown to potentiate apoptosis induced by CPT‑11. Berberine suppressed CPT‑11‑induced NF‑κB activation in a dose‑dependent manner and enhanced chemosensitivity to CPT‑11 by downregulating NF‑κB activation of antiapoptotic genes, c‑IAP1, c‑IAP2, survivin and Bcl‑xL. The current observations indicate that berberine inhibits NF‑κB activation and may be used to enhance CPT‑11‑induced apoptosis in colon cancer.
Paeonol is a major phenolic compound of the Chinese herb, Cortex Moutan, and is known for its antioxidant, anti-inflammatory and antitumor properties. The present study was designed to investigate the therapeutic potential and underlying mechanisms of paeonol on a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p)-induced mouse model of Parkinson's disease (PD). MPTP (25 mg/kg), followed by probenecid (250 mg/kg), was administered via i.p. injection for five consecutive days to induce the mouse model of PD. Paeonol (20 mg/kg) was administrated orally for 21 days. Behavior was assessed using the rotarod performance and open-field tests. Additionally, the levels of tyrosine hydroxylase (TH), microglia, interleukin-1β (IL-1β), and brain-derived neurotrophic factor (BDNF) in the substantia nigra pars compacta (SNpc) were evaluated by immunohistochemical staining. MPTP/p-induced motor deficits were observed to be significantly improved following long-term treatment with paeonol. Paeonol treatment decreased MPTP/p-induced oxidative stress, as determined by evaluating the activity levels of superoxide dismutase, catalase and glutathione. Additionally, MPTP/p-induced neuroinflammation was assessed by examining the levels of microglia and IL-1β, which were significantly decreased following paeonol treatment. Paeonol treatment improved the MPTP/p-induced dopaminergic neurodegeneration, as measured by observing the increased TH level in the SNpc. Furthermore, the BDNF level was significantly elevated in the paeonol treatment group compared with mice treated with MPTP/p only. In conclusion, paeonol exerted therapeutic effects in the MPTP/p-induced mouse model of PD, possibly by decreasing the damage from oxidative stress and neuroinflammation, and by enhancing the neurotrophic effect on dopaminergic neurons. The results demonstrate paeonol as a potential novel treatment for PD.
We concluded from this study that Bifidobacterium alleviated GBS by regulating Th cells, although in-depth studies might be required to fully understand the mechanism of action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.