Roughly half of all vestibular nucleus neurons without eye movement sensitivity respond to both angular rotation and linear acceleration. Linear acceleration signals arise from otolith organs, and rotation signals arise from semicircular canals. In the vestibular nerve, these signals are carried by different afferents. Vestibular nucleus neurons represent the first point of convergence for these distinct sensory signals. This study systematically evaluated how rotational and translational signals interact in single neurons in the vestibular nuclei: multisensory integration at the first opportunity for convergence between these two independent vestibular sensory signals. Single-unit recordings were made from the vestibular nuclei of awake macaques during yaw rotation, translation in the horizontal plane, and combinations of rotation and translation at different frequencies. The overall response magnitude of the combined translation and rotation was generally less than the sum of the magnitudes in responses to the stimuli applied independently. However, we found that under conditions in which the peaks of the rotational and translational responses were coincident these signals were approximately additive. With presentation of rotation and translation at different frequencies, rotation was attenuated more than translation, regardless of which was at a higher frequency. These data suggest a nonlinear interaction between these two sensory modalities in the vestibular nuclei, in which coincident peak responses are proportionally stronger than other, off-peak interactions. These results are similar to those reported for other forms of multisensory integration, such as audio-visual integration in the superior colliculus. NEW & NOTEWORTHY This is the first study to systematically explore the interaction of rotational and translational signals in the vestibular nuclei through independent manipulation. The results of this study demonstrate nonlinear integration leading to maximum response amplitude when the timing and direction of peak rotational and translational responses are coincident.
The cerebellar interpositus nucleus (IN) contributes to controlling voluntary limb movements. We hypothesized that the vestibular signals within the IN might be transformed into coordinates describing the body’s movement, appropriate for controlling limb movement. We tested this hypothesis by recording from IN neurons in alert squirrel monkeys during vestibular and proprioceptive stimulation produced during (1) yaw head-on-trunk rotation about the C1–C2 axis while in an orthograde posture and (2) lateral side-to-side flexion about the C6 –T3 axis while in a pronograde posture. Neurons (44/67) were sensitive to vestibular stimulation (23/44 to rotation and translation, 14/44 to rotation only, 7/44 to translation only). Most neurons responded during contralateral movement. Neurons (29/44) had proprioceptive responses; the majority (21/29) were activated during neck rotation and lateral flexion. In all 29 neurons with convergent vestibular and neck proprioceptive input those inputs functionally canceled each other during all combined sensory stimulation, whether in the orthograde or pronograde posture. These results suggest that two distinct populations of IN neurons exist, each of which has vestibular sensitivity. One population carries vestibular signals that describe the head’s movement in space as is traditional for vestibular signals without proprioceptive signals. A second population of neurons demonstrated precise matching of vestibular and proprioceptive signals, even for complicated stimuli, which activated the semicircular canals and otolith organs and involved both rotation and flexion in the spine. Such neurons code body (not head) motion in space, which may be the appropriate platform for controlling limb movements.
The vestibular nerve sends signals to the brain that code the movement and position of the head in space. These signals are used by the brain for a variety of functions, including the control of reflex and voluntary movements and the construction of a sense of self-motion. If many of these functions are to be carried out, a distinction must be made between sensory vestibular signals related to active head movements and those related to passive head movements. Current evidence is that the distinction occurs at an early stage of sensory processing in the brain, and the results are evident in the firing behavior of neurons in the vestibular nuclei that receive direct inputs from the vestibular nerve. Several specific examples of how sensory information related to passive and active head movements is transformed in the vestibular nuclei are discussed.
Passive translation of the body in space elicits a complex combination of directionally-specific torques that are exerted on the neck. The inertial torques that are produced by linear translation are counteracted by linear vestibular and proprioceptive reflexes that maintain head stability. A novel experimental apparatus was used in this study to translate human subjects in a random and unpredictable direction in order to quantify the head's 3-D movement with respect to the direction of translation. Head movements were found to be produced in systematic patterns as a function of stimulus direction. Roll and yaw head movements were produced in proportion to the magnitude of the lateral component of the translation. Pitch head movements were proportionate to the magnitude of the fore-aft component of the translation. One surprising observation was that head movements produced during lateral translations were, on average, 17% smaller than those produced during fore-aft translations. This suggests that linear vestibular reflexes that stabilize the head may be directionally-specific and more active during lateral whole body translations.
The vestibular nerve sends signals to the brain that code the movement and position of the head in space. These signals are used for a variety of functions, including the control of reflex and voluntary movements and the construction of a sense of self‐motion. In order to carry out these functions, sensory vestibular signals need to be transformed in a variety of ways. Transformations are thought to occur at an early stage of sensory processing in the brain, and in many cases are apparent in the responses of neurons in the vestibular nuclei that receive direct inputs from the vestibular nerve. Several specific examples of sensory transformation in the vestibular nuclei are presented, and current hypotheses about the mechanisms that are used to produce the transformations are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.