No abstract
This study characterizes the regional changes in vascularity, which accompanies chronic progressive hydrocephalus. Fifteen dogs underwent surgical induction of hydrocephalus and were used for histologic studies. Animals were divided into 4 groups: surgical control, short term (< or = 5 weeks), intermediate term (8 weeks), and long term (10 to 12 weeks). Vessel diameter, density, and luminal area were calculated by imaging quantification after manual vessel identification in the cortical gray, white matter, and caudate nucleus. Capillary vessel diameter decreased 23.5% to 30.2% (P < 0.01) in the caudate, but then returned to normal at 12 weeks. Capillary vessel density decreased 53.5% (P < 0.05) in the cortical gray, but then increased to 234.8% (P < 0.01) over surgical controls at 12 weeks. There was no initial decrease in capillary density in the caudate; however, the long-term group capillary density was significantly greater (172.8% to 210.5%, P < 0.01) than surgical controls. Overall, there was a short-term decrease in lumen area, with recovery in the longer term. Glial fibrillary acidic protein (GFAP) immunohistochemistry demonstrated the pattern of GFAP staining and reactive astrocytes differed in the caudate compared with the occipital cortex. This data suggest that an increase in capillary density and diameter may be an adaptive process allowing maintenance of adequate cerebral perfusion and metabolic support in the hypoxic environment of chronic hydrocephalus.
Extracellular discharges from single neurons in the internal segment of the globus pallidus (GPi) were recorded and analyzed for rate changes associated with visually guided forearm rotations to four different targets. We sought to examine how GPi neurons contribute to movement preparation and execution. Unit discharge from 108 GPi neurons recorded in 35 electrode penetrations was aligned to the time of various behavioral events, including the onset of cued and return movements. In total, 39 of 108 GPi neurons (36%) were task-modulated, demonstrating statistically significant changes in discharge rate at various times between the presentation of visual cues and movement generation. Most often, strong modulation in discharge rate occurred selectively during either the cued (n = 32) or return (n = 2) phases of the task, although a few neurons (n = 5) were well-modulated during both movement phases. Of the 34 neurons that were modulated exclusively during cued or return movements, 50% (n = 17) were modulated similarly in association with movements to any target. The remaining 17 neurons exhibited considerable diversity in their discharge properties associated with movements to each target. Cued phases of behavior were always rewarded if executed correctly, whereas return phases were never rewarded. Overall, these data reveal that many GPi neurons discharged in a context-dependent manner, being modulated during cued, rewarded movements, but not during similar self-paced, unrewarded movements. When considered in the light of other observations, the context-dependence we have observed seems likely to be influenced by the animal's expectation of reward.
The cerebellar interpositus nucleus (IN) contributes to controlling voluntary limb movements. We hypothesized that the vestibular signals within the IN might be transformed into coordinates describing the body’s movement, appropriate for controlling limb movement. We tested this hypothesis by recording from IN neurons in alert squirrel monkeys during vestibular and proprioceptive stimulation produced during (1) yaw head-on-trunk rotation about the C1–C2 axis while in an orthograde posture and (2) lateral side-to-side flexion about the C6 –T3 axis while in a pronograde posture. Neurons (44/67) were sensitive to vestibular stimulation (23/44 to rotation and translation, 14/44 to rotation only, 7/44 to translation only). Most neurons responded during contralateral movement. Neurons (29/44) had proprioceptive responses; the majority (21/29) were activated during neck rotation and lateral flexion. In all 29 neurons with convergent vestibular and neck proprioceptive input those inputs functionally canceled each other during all combined sensory stimulation, whether in the orthograde or pronograde posture. These results suggest that two distinct populations of IN neurons exist, each of which has vestibular sensitivity. One population carries vestibular signals that describe the head’s movement in space as is traditional for vestibular signals without proprioceptive signals. A second population of neurons demonstrated precise matching of vestibular and proprioceptive signals, even for complicated stimuli, which activated the semicircular canals and otolith organs and involved both rotation and flexion in the spine. Such neurons code body (not head) motion in space, which may be the appropriate platform for controlling limb movements.
We recorded extracellular single unit discharges of globus pallidus internal segment (GPi) neurons in monkeys performing a visually-driven forearm rotation movement task in order to quantify how discharge patterns changed in relation to kinematic parameters. Subjects grasped a handle that rotated about its axis while facing a video screen displaying visual targets. Continuous visual feedback of handle rotation position was provided. Monkeys generated forearm rotation movements of ±35° and ±70° amplitude in order to align the cursor and targets. Trial records were aligned to forearm rotation onset in order to compare the discharge patterns that were associated with movements of different amplitudes, velocities, and directions. In addition, we quantified the depth of modulation of neuronal discharge associated with movements generated in two different task phases. Comparisons of discharge patterns were made between the visually-guided, rewarded phase ("cued movements") and the self-paced, unrewarded phase that returned the monkey to the task start position ("return movements") by quantifying the goodness of fit between neuronal discharge during cued and return movements.Our analyses revealed no systematic relationship between the depth of modulation of GPi neurons and forearm rotation amplitude, direction, or velocity. Further, comparisons between the two behavioral contexts revealed a systematic attenuation of modulation that could not be attributed to differences in movement velocity. Collectively, these findings suggest that the GPi neurons that we studied were not significantly involved in mediating movement kinematics, but may have instead been instrumental in the processing of information about the behavioral context during which movements were generated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.