A compact water-cooled thermoelectric generator (TEG) based on a portable gas stove was designed and analyzed to supply electricity in off-grid scenarios. The TEG incorporates a newly designed heat collector, eight thermoelectric (TE) modules, and a radiator to ensure its portability (5.9 kg) and sufficiency of electric power (12.9 W). Detailed measurements and discussions on power load feature and TE efficiency are presented. Experiments showed that the power generation capability of the proposed TEG is compromised by its compactness over previous water-cooled TEGs. A theoretical model incorporated with heat leaks from various origins has been developed to illustrate that the designed TEG exerts the potential of every TE module, and to reveal the proportion of various heat fluxes. The predicted electric power, various heat fluxes, and TE efficiency agree well with experimental data. The limitations of TE efficiency and the nonlinearity caused by Joule heat are discussed quantitatively.
Distributed trigeneration has been regarded as one of the leading solutions for the future energy production. Unlike centralized energy systems, trigeneration typically recovers otherwise wasted energy and supplies combined cooling, heating, and power products to end users simultaneously, which however causes difficulties in meeting weak temporal-correlated energy demands of end users. Inspired by the success in electric energy systems, energy storage may provide effective solutions to the challenges with respect to trigeneration by decoupling energy generation and consumption. However, multiple key questions are yet fully understood for planning storage-integrated trigeneration systems. The present study aims to answer the following questions: (i) what roles of energy storage are going to play in a trigeneration system? And (ii) how would energy storage affect the performance of the trigeneration system? A self-coded trigeneration system planning model is developed via Python programming to optimize capacities of different devices in the trigeneration system with the presence of energy storage to meet variable multi-energy demands. The effects of the energy storage on the performance of the trigeneration system are investigated. The underlying mechanisms of the energy storage affecting the system’s performance are also explored based on the feasibility region analysis and wasted energy analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.