The composition and properties of edible coatings (ECs) will significantly influence their effects of food preservation. For the first time, whey protein isolates nanofibers (WPNFs), as a novel material with high hydrophobicity and antioxidant activity, combined with carvacrol (CA) as an antimicrobial agent and glycerol (Gly) as a plasticizer, was used to prepare edible coating (WPNFs-CA/Gly) for preserving fresh-cut Cheddar cheese. The prepared WPNFs and ECs emulsions have been investigated with transmission electron microscopy. Furthermore, the antioxidant activity of ECs emulsions, antimicrobial activity of edible films, and the physical properties of edible films, such as micromorphology, thickness, transparency, and moisture content, have also been evaluated. The weight losses and physical characteristics of both coated and uncoated fresh-cut Cheddar cheese samples have been assessed during storage. The DPPH free radical scavenging rate of WPNFs-CA/Gly emulsion was up to 67.89% and the reducing power was 0.821, which was higher than that of WPI-CA/Gly emulsions. The antimicrobial activity of WPNFs-CA/Gly films was nearly 2.0-fold higher than that of WPNFs/Gly films for the presence of CA. The WPNFs-CA/Gly films had smooth and continuous surfaces, and the transparency reached 49.7% and the moisture content was 26.0%, which was better than that of WPI-CA/Gly films. Furthermore, Cheddar cheese with WPNFs-CA/Gly coatings has shown lower weight losses (15.23%) and better textural properties than those uncoated samples. This in-depth study has provided a valuable and noteworthy approach about the novel edible coating material.
With the increased interest in information on gut microbes, people are realizing the benefits of probiotics to health, and new technologies to improve the viability of probiotics are still explored. However, most probiotics have poor resistance to adverse environments. In order to improve the viability of lactic acid bacteria, polylactic acid (PLA) nanofibers were prepared by coaxial electrospinning. The electrospinning voltage was 16 kV, and the distance between spinneret and collector was 15 cm. The feed rates of the shell and core solutions were 1.0 and 0.25 mL/h, respectively. The lactic acid bacteria were encapsulated in the coaxial electrospun nanofibers with PLA and fructooligosaccharides (FOS) as the shell materials. Scanning electron microscopy, transmission electron microscopy, and laser scanning confocal microscopy showed that lactic acid bacteria were encapsulated in the coaxial electrospun nanofibers successfully. The water contact angle test indicated that coaxial electrospun nanofiber films had good hydrophobicity. An in vitro simulated digestion test exhibited that the survival rate of lactic acid bacteria encapsulated in coaxial electrospun nanofiber films was more than 72%. This study proved that the viability of probiotics can be improved through encapsulation within coaxial electrospun PLA nanofibers and provided a novel approach for encapsulating bioactive substances.
To
investigate the effects of different binding modes on the structure,
function, and digestive properties of the phosvitin (Pv) and gallic
acid (GA) complex, Pv was covalently and noncovalently combined with
different concentrations of GA (0.5, 1.5, and 2.5 mM). The structural
characterization of the two Pv–GA complexes was performed by
Fourier transform infrared, circular dichroism, and LC–MS/MS
to investigate the covalent and noncovalent binding of Pv and GA.
In addition, the microstructure of the two Pv–GA complexes
was investigated by super-resolution microscopy and transmission electron
microscopy. The particle size and zeta potential results showed that
the addition of GA increased the particle size and the absolute potential
of Pv. The determination of protein digestibility, polyphenol content,
SH and S–S group levels, sodium dodecyl sulfate-polyacrylamide
gel electrophoresis, and antioxidant capacity of the digests indicated
that noncovalent complexes had greater antioxidant and protective
effects on polyphenols. Molecular docking revealed that GA was conjugated
with Pv through hydrogen bond interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.