Many cancer drugs are toxic to cells by activating apoptotic pathways. Previous studies have shown that mitochondria have key roles in apoptosis in mammalian cells, but the role of mitochondrial DNA (mtDNA) copy number variation in the pathogenesis of tumor cell apoptosis remains largely unknown. We used the HEp-2, HNE2, and A549 tumor cell lines to explore the relationship between mtDNA copy number variation and cell apoptosis. We first induced apoptosis in three tumor cell lines and one normal adult human skin fibroblast cell line (HSF) with cisplatin (DDP) or doxorubicin (DOX) treatment and found that the mtDNA copy number significantly increased in apoptotic tumor cells, but not in HSF cells. We then downregulated the mtDNA copy number by transfection with shRNA-TFAM plasmids or treatment with ethidium bromide and found that the sensitivity of tumor cells to DDP or DOX was significantly increased. Furthermore, we observed that levels of reactive oxygen species (ROS) increased significantly in tumor cells with lower mtDNA copy numbers, and this might be related to a low level of antioxidant gene expression. Finally, we rescued the increase of ROS in tumor cells with lipoic acid or N-acetyl-L-cysteine and found that the apoptosis rate decreased. Our studies suggest that the increase of mtDNA copy number is a self-protective mechanism of tumor cells to prevent apoptosis and that reduced mtDNA copy number increases ROS levels in tumor cells, increases the tumor cells' sensitivity to chemotherapeutic drugs, and increases the rate of apoptosis. This research provides evidence that mtDNA copy number variation might be a promising new therapeutic target for the clinical treatment of tumors.
One of the most unfortunate side effects of aminoglycoside (AG) antibiotics such as neomycin is that they target sensory hair cells (HCs) and can cause permanent hearing impairment. We have observed HC loss and microglia-like cell (MLC) activation in the inner ear (cochlea) following neomycin administration. We focused on CX3CL1, a membrane-bound glycoprotein expressed on neurons and endothelial cells, as a way to understand how the MLCs are activated and the role these cells play in HC loss. CX3CL1 is the exclusive ligand for CX3CR1, which is a chemokine receptor expressed on the surface of macrophages and MLCs. In vitro experiments showed that the expression levels of CX3CL1 and CX3CR1 increased in the cochlea upon neomycin treatment, and CX3CL1 was expressed on HCs, while CX3CR1 was expressed on MLCs. When cultured with 1 μg/mL exogenous CX3CL1, MLCs were activated by CX3CL1, and the cytokine level was increased in the cochleae leading to apoptosis in the HCs. In CX3CR1 knockout mice, a significantly greater number of cochlear HCs survived than in wild-type mice when the cochlear explants were cultured with neomycin in vitro. Furthermore, inhibiting the activation of MLCs with minocycline reduced the neomycin-induced HC loss and improved the hearing function in neomycin-treated mice in vivo. Our results demonstrate that CX3CL1-induced MLC activation plays an important role in the induction of HC death and provide evidence for CX3CL1 and CX3CR1 as promising new therapeutic targets for the prevention of hearing loss.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Histone deacetylases are involved in many biological processes and have roles in regulating cell behaviors such as cell cycle entry, cell proliferation and apoptosis. However, the effect of histone deacetylases on the development of hair cells (HCs) has not been fully elucidated. In this study, we examined the influence of histone deacetylases on the early development of neuromasts in the lateral line of zebrafish. Hair cell development was evaluated by fluorescent immunostaining in the absence or presence of histone deacetylase inhibitors. Our results suggested that pharmacological inhibition of histone deacetylases with inhibitors, including trichostatin A, valproic acid and MS-275, reduced the numbers of both HCs and supporting cells in neuromasts. We also found that the treatment of zebrafish larvae with inhibitors caused accumulation of histone acetylation and suppressed proliferation of neuromast cells. Real-time PCR results showed that the expression of both p21 and p27 mRNA was increased following trichostatin A treatment and the increase in p53 mRNA was modest under the same conditions. However, the expression of p53 mRNA was significantly increased by treatment with a high concentration of trichostatin A. A high concentration of trichostatin A also led to increased cell death in neuromasts as detected in a TUNEL assay. Moreover, the nuclei of most of these pyknotic cells were immunohistochemically positive for cleaved caspase-3. These results suggest that histone deacetylase activity is involved in lateral line development in the zebrafish and might have a role in neuromast formation by altering cell proliferation through the expression of cell cycle regulatory proteins.
Here, we have revealed a novel role for HDACs in orchestrating PLL morphogenesis. Our results suggest that HDAC activity is necessary for control of cell proliferation and migration of PLL primordium and hair cell differentiation during early stages of PLL development in zebrafish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.