During differentiation, human embryonic stem cells (hESCs) shut down the regulatory network conferring pluripotency in a process we designated pluripotent state dissolution (PSD). In a high-throughput RNAi screen using an inclusive set of differentiation conditions, we identify centrally important and context-dependent processes regulating PSD in hESCs, including histone acetylation, chromatin remodeling, RNA splicing, and signaling pathways. Strikingly, we detected a strong and specific enrichment of cell-cycle genes involved in DNA replication and G2 phase progression. Genetic and chemical perturbation studies demonstrate that the S and G2 phases attenuate PSD because they possess an intrinsic propensity toward the pluripotent state that is independent of G1 phase. Our data therefore functionally establish that pluripotency control is hardwired to the cell-cycle machinery, where S and G2 phase-specific pathways deterministically restrict PSD, whereas the absence of such pathways in G1 phase potentially permits the initiation of differentiation.
BACKGROUND & AIMS: There are few in vitro models for studying the 3-dimensional interactions among different liver cell types during organogenesis or disease development. We aimed to generate hepatic organoids that comprise different parenchymal liver cell types and have structural features of the liver, using human pluripotent stem cells. METHODS: We cultured H1 human embryonic stem cells (WA-01, passage 27-40) and induced pluripotent stem cells (GM23338) with a series of chemically defined and serum-free media to induce formation of posterior foregut cells, which were differentiated in 3 dimensions into hepatic endoderm spheroids and stepwise into hepatoblast spheroids. Hepatoblast spheroids were reseeded in a high-throughput format and induced to form hepatic organoids; development of functional bile canaliculi was imaged live. Levels of albumin and apolipoprotein B were measured in cell culture supernatants using an enzyme-linked immunosorbent assay. Levels of gamma glutamyl transferase and alkaline phosphatase were measured in cholangiocytes. Organoids were incubated with troglitazone for varying periods and bile transport and accumulation were visualized by live
Human embryonic stem cells (hESCs) harbour the ability to undergo lineage-specific differentiation into clinically relevant cell types. Transcription factors and epigenetic modifiers are known to play important roles in the maintenance of pluripotency of hESCs. However, little is known about regulation of pluripotency through splicing. In this study, we identify the spliceosome-associated factor SON as a factor essential for the maintenance of hESCs. Depletion of SON in hESCs results in the loss of pluripotency and cell death. Using genome-wide RNA profiling, we identified transcripts that are regulated by SON. Importantly, we confirmed that SON regulates the proper splicing of transcripts encoding for pluripotency regulators such as OCT4, PRDM14, E4F1 and MED24. Furthermore, we show that SON is bound to these transcripts in vivo. In summary, we connect a splicing-regulatory network for accurate transcript production to the maintenance of pluripotency and self-renewal of hESCs.
The maintenance of mouse embryonic stem cells (mESCs) requires LIF and serum. However, a pluripotent "ground state," bearing resemblance to preimplantation mouse epiblasts, can be established through dual inhibition (2i) of both prodifferentiation Mek/Erk and Gsk3/Tcf3 pathways. While Gsk3 inhibition has been attributed to the transcriptional derepression of Esrrb, the molecular mechanism mediated by Mek inhibition remains unclear. In this study, we show that Krüppel-like factor 2 (Klf2) is phosphorylated by Erk2 and that phospho-Klf2 is proteosomally degraded. Mek inhibition hence prevents Klf2 protein phosphodegradation to sustain pluripotency. Indeed, while Klf2-null mESCs can survive under LIF/Serum, they are not viable under 2i, demonstrating that Klf2 is essential for ground state pluripotency. Importantly, we also show that ectopic Klf2 expression can replace Mek inhibition in mESCs, allowing the culture of Klf2-null mESCs under Gsk3 inhibition alone. Collectively, our study defines the Mek/Erk/Klf2 axis that cooperates with the Gsk3/Tcf3/Esrrb pathway in mediating ground state pluripotency.
The G2 checkpoint monitors DNA damage, preventing mitotic entry until the damage can be resolved. The mechanisms controlling checkpoint recovery are unclear. Here, we identify non-genetic heterogeneity in the fidelity and timing of damage-induced G2 checkpoint enforcement in individual cells from the same population. Single-cell fluorescence imaging reveals that individual damaged cells experience varying durations of G2 arrest, and recover with varying levels of remaining checkpoint signal or DNA damage. A gating mechanism dependent on polo-like kinase-1 (PLK1) activity underlies this heterogeneity. PLK1 activity continually accumulates from initial levels in G2-arrested cells, at a rate inversely correlated to checkpoint activation, until it reaches a threshold allowing mitotic entry regardless of remaining checkpoint signal or DNA damage. Thus, homeostatic control of PLK1 by the dynamic opposition between checkpoint signalling and pro-mitotic activities heterogeneously enforces the G2 checkpoint in each individual cell, with implications for cancer pathogenesis and therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.