N-glycosylation and phosphorylation, two common posttranslational modifications, play important roles in various biological processes and are extensively studied for biomarker and drug target screening. Because of their low abundance, enrichment of N-glycopeptides and phosphopeptides prior to LC–MS/MS analysis is essential. However, simultaneous characterization of these two types of posttranslational modifications in complex biological samples is still challenging, especially for tiny amount of samples obtained in tissue biopsy. Here, we introduced a new strategy for the highly efficient tandem enrichment of N-glycopeptides and phosphopeptides using HILIC and TiO2 microparticles. The N-glycopeptides and phosphosites obtained by tandem enrichment were 21%–377% and 22%–263% higher than those obtained by enriching the two PTM peptides separately, respectively, using 160–20 μg tryptic digested peptides as the starting material. Under the optimized conditions, 2798 N-glycopeptides from 434 N-glycoproteins and 5130 phosphosites from 1986 phosphoproteins were confidently identified from three technical replicates of HeLa cells by mass spectrometry analysis. Application of this tandem enrichment strategy in a lung cancer study led to simultaneous characterization of the two PTM peptides and discovery of hundreds of differentially expressed N-glycosylated and phosphorylated proteins between cancer and normal tissues, demonstrating the high sensitivity of this strategy for investigation of dysregulated PTMs using very limited clinical samples.
Single and rare cell analysis provides unique insights into the investigation of biological processes and disease progress by resolving the cellular heterogeneity that is masked by bulk measurements. Although many efforts have been made, the techniques used to measure the proteome in trace amounts of samples or in single cells still lag behind those for DNA and RNA due to the inherent non-amplifiable nature of proteins and the sensitivity limitation of current mass spectrometry. Here, we report an MS/MS spectra merging strategy termed SPPUSM (same precursor-produced unidentified spectra merging) for improved low-input and single-cell proteome data analysis. In this method, all the unidentified MS/MS spectra from multiple test files are first extracted. Then, the corresponding MS/MS spectra produced by the same precursor ion from different files are matched according to their precursor mass and retention time (RT) and are merged into one new spectrum. The newly merged spectra with more fragment ions are next searched against the database to increase the MS/MS spectra identification and proteome coverage. Further improvement can be achieved by increasing the number of test files and spectra to be merged. Up to 18.2% improvement in protein identification was achieved for 1 ng HeLa peptides by SPPUSM. Reliability evaluation by the "entrapment database" strategy using merged spectra from human and E. coli revealed a marginal error rate for the proposed method. For application in single cell proteome (SCP) study, identification enhancement of 28%-61% was achieved for proteins for different SCP data. Furthermore, a lower abundance was found for the SPPUSM-identified peptides, indicating its potential for more sensitive low sample input and SCP studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.