A stretchable fluorescent optical fiber provides a flexible platform for wearable functional devices due to its stretchability and immunity to electromagnetic interference. However, for wearable applications, stretchable fiber sensors suffer from severe body movement-induced strain interference. Here, we report a stretchable optical sensor with strain-decoupling ability. The stretchable core-clad structured optical fiber is prepared with fluorescent nanoparticles and silicone-based elastomers that enable both efficient excitation light delivery and fluorescence collection. The excitation light loss and fluorescence intensity exhibit a linear response to the sensing variables and strain change, which have been utilized as the sensing parameters to decouple the strain from the sensing variables. Our strain-decoupled scheme is widely applicable to other stretchable fluorescent optical fiber sensors that are simultaneously subject to strain. In the experiment described here, the temperature-sensitive fluorescent nanoparticle-doped stretchable fluorescent optical fiber exhibits stable temperature-sensing in the range −10 to 60 °C, with an uncertainty as low as ±0.23 °C and a relative sensitivity of 1.3% °C–1, even when it is subjected to large strain up to 40%. We demonstrate sensor-integrated wearable masks and gloves, which can simultaneously measure physiological thermal changes and the movement of the wrist joint. Our sensor shows great promise as a technology for wearable health monitoring.
Flexible strain sensors are essential components of wearable smart devices that perceive and respond to strain stimulations. However, the sensitivity and response time of most sensors require further improvement to detect subtle strains related to human bodies. Herein, an ultrasensitive flexible optical sensor with fast response time has been built based on a microfiber coupler encapsulated in polydimethylsiloxane. Benefiting from dramatic change of coupling ratio of the microfiber coupler under weak strain, this flexible strain sensor exhibits ultrahigh strain sensitivity (gauge factor, GF = 900), low detection limit (0.001%), ultrafast response time (<0.167 ms), wide sensing range (0.45%), and superior durability and stability (>10 000 cycles). Real‐time capturing and recognizing of respiration, broadband sound signals, and pulse waves at different sites of human body have been demonstrated based on this highly sensitive microfiber coupler sensor. Moreover, simultaneous detection of the wrist pulse and human voice has been achieved based on the frequency division multiplexing technology. This flexible photonics strain sensor could serve as the prototype of ultrasensitive flexible optical sensors with fast response time for the development of high performance and wearable healthcare devices.
Fiber-optic sensors are attracting attention because of their high sensitivity, fast response, large capacity-transmission, and anti-electromagnetic interference advantages. Nevertheless, rigid optical fibers are inevitably damaged or even fractured in applications involving large tensile or bending strains (e.g., human body monitoring, soft robotics, and biomedical devices) and the position of the fracture is difficult to locate and repair. Therefore, optically self-healing fiberoptic sensors are highly desirable. Here, we report a design strategy for increasing the polymer segmental mobility and reversible non-covalent bond density of poly(polymerizable deep eutectic solvent) (PDES) to continuously fabricate a core−cladding poly(PDES) optical fiber (CPOF) with significant optical, electrical, and mechanical self-healing abilities. It also possesses low optical propagation attenuation (0.31 dB cm −1 ), wide temperature tolerance (−77−168 °C), and excellent biocompatibility. Moreover, CPOFs have been validated for gesture recognition, subcutaneous self-healing, and pressure−temperature detection, owing to their ability to transmit dual optical-electrical signals in real time, and are promising for various applications in industrial and technological fields.
The ability to locate and quantify large strains will significantly improve the real‐world application scenario of flexible and stretchable strain sensors. However, current methods for implementing stretchable distributed strain sensing still face challenges such as complicated demodulation, multisensor crosstalk, and high power consumption. Herein, a self‐powered and stretchable optical fiber strain sensor is reported with distributed sensing capability based on mechanoluminescent optical fiber, where mechanoluminescent phosphors with different emission color light are discretely integrated onto the outer cladding of the elastomer optical fiber. Based on the wavelength coding technique and time‐domain filtering comparison method, the capability of strain magnitude quantification (10–60%) and strain location identification together in a single stretchable optical fiber is successfully realized, even at multiple positions simultaneously in the strain‐applied situation. Moreover, this stretchable optical fiber strain sensor shows insensitivity to bending, compression, and temperature disturbances and outstanding durability (>8000 cycles). Due to the excellent light confinement of the elastomer optical fiber, demonstrations such as bright‐field measurement, saline water operation, and wearable glove application exhibit its potential as a promising technology for future self‐powered distributed optical sensing systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.