One‐dimensional model on the membrane electrode assembly (MEA) of proton exchange membrane fuel cell is proposed, where the membrane hydration/dehydration and the possible water flooding of the respective cathode and anode gas diffusion layers are considered. A novel approach of phase‐equilibrium approximation is proposed to trace the water front and the detailed saturation profile once water emerges in either anode or cathode gas diffusion layer. The approach is validated by a semi‐analytical method published earlier. The novel approach is applicable to the polarization regime from open circuit voltage to the limiting current density under practical operation conditions. Oxygen diffusion is limited by water accumulation in the cathode gas diffusion layer as current increases, caused by excessive water generation at the cathode catalyst layer and the electro‐osmotic drag across the membrane. The existence of liquid water in the anode gas diffusion layer is predicted at low current densities if high degrees of humidification in both anode and cathode feeds are employed. The influences of inlet relative humidity, imposed pressure drop, and cell temperature are correlated well with the cell performance. In addition, the overpotentials attributed from individual components of the MEA are delineated against the cell current densities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.