The novel random forests algorithm with variables random input and random combination (Forest_RI_RC) machine was proposed to improve the weakness of low accuracy and over-fitting phenomenon in single decision tree. The proposed method produces more and more selections and combinations to increase the possibility of the best decision-making features. This way reduces the correlation coefficient of the random forests, which efficiently lead to the lower generalization error and approach the higher classification accuracy. The standard machine learning datasets were used to verify the validity of the classification. The simulation results showed that the novel algorithm with the multiple classifiers to concurrently segment the objects and achieve the smaller generalization error. Finally, the algorithm was applied to the classified problems of mangrove remote sensing image. Software simulations presents that the classification accuracy is basically stable at around 90 %. This performance is better than the other two decision tree and bagging methods.
An autonomous robot is designed and implemented to support the service works. Many technologies were adapted, namely human-robot interaction order system, path planning and mapping in indoor, Robot Operating System (ROS), and Cyber Physical System (CPS). Many subsystems are developed and constructed based on ROS to implement a human-interaction action in completing service robot tasks. A human-robot interaction order system is designed for the convenient human servicing purpose. Therefore, the customer quickly finds the commodity information through the internet. This system recommends the commodity according to the content of the database. In addition, the customer makes an order by touch screen interface, and then it sends a command to control the robot to deliver the commodity. In the second subsystem, it includes path planning and mapping generation. The well-known simultaneous localization and mapping (SLAM) concept with a Rao-Blackwellized particle filter (RBPF) addresses the appropriated maps after completing the exploration of the indoor environment. In order to reach better robustness and agility, the hybrid path planning algorithm includes a global A* algorithm and local dynamic window approach (DWA) to navigation. In the third subsystem, the Gazebo makes the perfect construction of CPS design. Finally, the simulation and implementation of dual-arm robot navigation with the interactive order situation to efficiently support servicing actions of the robot and finish the required tasks.
An object pick-and-place system with a camera, a six-degree-of-freedom (DOF) robot manipulator, and a two-finger gripper is implemented based on the robot operating system (ROS) in this paper. A collision-free path planning method is one of the most fundamental problems that has to be solved before the robot manipulator can autonomously pick-and-place objects in complex environments. In the implementation of the real-time pick-and-place system, the success rate and computing time of path planning by a six-DOF robot manipulator are two essential key factors. Therefore, an improved rapidly-exploring random tree (RRT) algorithm, named changing strategy RRT (CS-RRT), is proposed. Based on the method of gradually changing the sampling area based on RRT (CSA-RRT), two mechanisms are used in the proposed CS-RRT to improve the success rate and computing time. The proposed CS-RRT algorithm adopts a sampling-radius limitation mechanism, which enables the random tree to approach the goal area more efficiently each time the environment is explored. It can avoid spending a lot of time looking for valid points when it is close to the goal point, thus reducing the computing time of the improved RRT algorithm. In addition, the CS-RRT algorithm adopts a node counting mechanism, which enables the algorithm to switch to an appropriate sampling method in complex environments. It can avoid the search path being trapped in some constrained areas due to excessive exploration in the direction of the goal point, thus improving the adaptability of the proposed algorithm to various environments and increasing the success rate. Finally, an environment with four object pick-and-place tasks is established, and four simulation results are given to illustrate that the proposed CS-RRT-based collision-free path planning method has the best performance compared with the other two RRT algorithms. A practical experiment is also provided to verify that the robot manipulator can indeed complete the specified four object pick-and-place tasks successfully and effectively.
This paper designed a voice interactive robot system that can conveniently execute assigned service tasks in real-life scenarios. It is equipped without a microphone where users can control the robot with spoken commands; the voice commands are then recognized by a well-trained deep neural network model of automatic speech recognition (ASR), which enables the robot to execute and complete the command based on the navigation of a real-time simultaneous localization and mapping (SLAM) algorithm. The voice interaction recognition model is divided into two parts: (1) speaker separation and (2) ASR. The speaker separation is applied by a deep-learning system consisting of eight convolution layers, one LSTM layer, and two fully connected (FC) layers to separate the speaker’s voice. This model recognizes the speaker’s voice as a referrer that separates and holds the required voiceprint and removes noises from other people’s voiceprints. Its automatic speech recognition uses the novel sandwich-type conformer model with a stack of three layers, and combines convolution and self-attention to capture short-term and long-term interactions. Specifically, it contains a multi-head self-attention module to directly convert the voice data into text for command realization. The RGB-D vision-based camera uses a real-time appearance-based mapping algorithm to create the environment map and replace the localization with a visional odometer to allow the robot to navigate itself. Finally, the proposed ASR model was tested to check if the desired results will be obtained. Performance analysis was applied to determine the robot’s environment isolation and voice recognition abilities. The results showed that the practical robot system successfully completed the interactive service tasks in a real environment. This experiment demonstrates the outstanding performance with other ASR methods and voice control mobile robot systems. It also verified that the designed voice interaction recognition system enables the mobile robot to execute tasks in real-time, showing that it is a convenient way to complete the assigned service applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.