BackgroundRecent reports have indicated that microRNAs (miRNAs) play a critical role in malignancies, and regulations in the progress of adult leukemia. The role of miRNAs in pediatric leukemia still needs to be established. The purpose of this study was to investigate the aberrantly expressed miRNAs in pediatric acute leukemia and demonstrate miRNA patterns that are pediatric-specific and prognostic parameter-associated.Methodology/Principal FindingsA total of 111 pediatric bone marrow samples, including 99 patients and 12 normal donors, were enrolled in this study. Of those samples, 36 patients and 7 normal samples were used as a test cohort for the evaluation of miRNA profiling; 63 pediatric patients and 5 normal donors were used as a validation cohort to confirm the miRNA differential expression. Pediatric ALL- and AML-specific microRNA expression patterns were identified in this study. The most highly expressed miRNAs in pediatric ALL were miR-34a, miR-128a, miR-128b, and miR-146a, while the highly expressed miRNAs in pediatric AML were miR-100, miR-125b, miR-335, miR-146a, and miR-99a, which are significantly different from those reported for adult CLL and AML. miR-125b and miR-126 may serve as favorable prognosticators for M3 and M2 patients, respectively. Importantly, we identified a “miRNA cascade” associated with central nervous system (CNS) relapse in ALL. Additionally, miRNA patterns associated with prednisone response, specific risk group, and relapse of ALL were also identified.Conclusions/SignificanceThere are existing pediatric-associated and prognostic parameter-associated miRNAs that are independent of cell lineage and could provide therapeutic direction for individual risk-adapted therapy for pediatric leukemia patients.
Relapse is a major challenge in the successful treatment of childhood acute lymphoblastic leukemia (ALL). Despite intensive research efforts, the mechanisms of ALL relapse are still not fully understood. An understanding of the molecular mechanisms underlying treatment outcome, therapy response and the biology of relapse is required. In this study, we carried out a genome-wide microRNA (miRNA) microarray analysis to determine the miRNA expression profiles and relapse-associated miRNA patterns in a panel of matched diagnosis–relapse or diagnosis–complete remission (CR) childhood ALL samples. A set of miRNAs differentially expressed either in relapsed patients or at diagnosis compared with CR was further validated by quantitative real-time polymerase chain reaction in an independent sample set. Analysis of the predicted functions of target genes based on gene ontology ‘biological process’ categories revealed that the abnormally expressed miRNAs are associated with oncogenesis, classical multidrug resistance pathways and leukemic stem cell self-renewal and differentiation pathways. Several targets of the miRNAs associated with ALL relapse were experimentally validated, including FOXO3, BMI1 and E2F1. We further investigated the association of these dysregulated miRNAs with clinical outcome and confirmed significant associations for miR-708, miR-223 and miR-27a with individual relapse-free survival. Notably, miR-708 was also found to be associated with the in vivo glucocorticoid therapy response and with disease risk stratification. These miRNAs and their targets might be used to optimize anti-leukemic therapy, and serve as novel targets for development of new countermeasures of leukemia. This fundamental study may also contribute to establish the mechanisms of relapse in other cancers.
BackgroundAlthough current chemotherapy regimens have remarkably improved the cure rate of pediatric acute promyelocytic leukemia (APL) over the past decade, more than 20% of patients still die of the disease, and the 5-year cumulative incidence of relapse is 17%. The precise gene pathways that exert critical control over the determination of cell lineage fate during the development of pediatric APL remain unclear.MethodsIn this study, we analyzed miR-125b expression in 169 pediatric acute myelogenous leukemia (AML) samples including 76 APL samples before therapy and 38 APL samples after therapy. The effects of enforced expression of miR-125b were evaluated in leukemic cell and drug-resistant cell lines.ResultsmiR-125b is highly expressed in pediatric APL compared with other subtypes of AML and is correlated with treatment response, as well as relapse of pediatric APL. Our results further demonstrated that miR-125b could promote leukemic cell proliferation and inhibit cell apoptosis by regulating the expression of tumor suppressor BCL2-antagonist/killer 1 (Bak1). Remarkably, miR-125b was also found to be up-regulated in leukemic drug-resistant cells, and transfection of a miR-125b duplex into AML cells can increase their resistance to therapeutic drugs,ConclusionsThese findings strongly indicate that miR-125b plays an important role in the development of pediatric APL at least partially mediated by repressing BAK1 protein expression and could be a potential therapeutic target for treating pediatric APL failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.