Preparedness for a possible influenza pandemic caused by highly pathogenic avian influenza A subtype H5N1 has become a global priority. The spread of the virus to Europe and continued human infection in Southeast Asia have heightened pandemic concern. It remains unknown from where the pandemic strain may emerge; current attention is directed at Vietnam, Thailand, and, more recently, Indonesia and China. Here, we report that genetically and antigenically distinct sublineages of H5N1 virus have become established in poultry in different geographical regions of Southeast Asia, indicating the long-term endemicity of the virus, and the isolation of H5N1 virus from apparently healthy migratory birds in southern China. Our data show that H5N1 influenza virus, has continued to spread from its established source in southern China to other regions through transport of poultry and bird migration. The identification of regionally distinct sublineages contributes to the understanding of the mechanism for the perpetuation and spread of H5N1, providing information that is directly relevant to control of the source of infection in poultry. It points to the necessity of surveillance that is geographically broader than previously supposed and that includes H5N1 viruses of greater genetic and antigenic diversity. genetics ͉ human ͉ influenza A ͉ virus evolution ͉ avian
Emerging and reemerging viruses are responsible for a number of recent epidemic outbreaks. A crucial step in predicting and controlling outbreaks is the timely and accurate characterization of emerging virus strains. We present a portable microfluidic platform containing carbon nanotube arrays with differential filtration porosity for the rapid enrichment and optical identification of viruses. Different emerging strains (or unknown viruses) can be enriched and identified in real time through a multivirus capture component in conjunction with surface-enhanced Raman spectroscopy. More importantly, after viral capture and detection on a chip, viruses remain viable and get purified in a microdevice that permits subsequent in-depth characterizations by various conventional methods. We validated this platform using different subtypes of avian influenza A viruses and human samples with respiratory infections. This technology successfully enriched rhinovirus, influenza virus, and parainfluenza viruses, and maintained the stoichiometric viral proportions when the samples contained more than one type of virus, thus emulating coinfection. Viral capture and detection took only a few minutes with a 70-fold enrichment enhancement; detection could be achieved with as little as 102 EID50/mL (50% egg infective dose per microliter), with a virus specificity of 90%. After enrichment using the device, we demonstrated by sequencing that the abundance of viral-specific reads significantly increased from 4.1 to 31.8% for parainfluenza and from 0.08 to 0.44% for influenza virus. This enrichment method coupled to Raman virus identification constitutes an innovative system that could be used to quickly track and monitor viral outbreaks in real time.
Rapid and specific detection of avian influenza virus (AIV) is urgently needed due to the concerns over the potential outbreaks of highly pathogenic H5N1 influenza in animals and humans. Aptamers are artificial oligonucleic acids that can bind specific target molecules, and show comparable affinity for target viruses and better thermal stability than monoclonal antibodies. The objective of this research was to use a DNA-aptamer as the specific recognition element in a portable Surface Plasmon Resonance (SPR) biosensor for rapid detection of AIV H5N1 in poultry swab samples. A SPR biosensor was fabricated using selected aptamers that were biotinylated and then immobilized on the sensor gold surface coated with streptavidin via streptavidin-biotin binding. The immobilized aptamers captured AIV H5N1 in a sample solution, which caused an increase in the refraction index (RI). After optimizing the streptavidin and aptamer parameters, the results showed that the RI value was linearly related (R2 = 0.99) to the concentration of AIV in the range of 0.128 to 1.28 HAU. Negligible signal (<4% of H5N1) was observed from six non-target AIV subtypes. The AIV H5N1 in poultry swab samples with concentrations of 0.128 to 12.8 HAU could be detected using this aptasensor in 1.5 h.
Avian reovirus (ARV) infections of broiler and turkey flocks have caused significant clinical disease and economic losses in Pennsylvania (PA) since 2011. Most of the ARV-infected birds suffered from severe arthritis, tenosynovitis, pericarditis and depressed growth or runting-stunting syndrome (RSS). A high morbidity (up to 20% to 40%) was observed in ARV-affected flocks, and the flock mortality was occasionally as high as 10%. ARV infections in turkeys were diagnosed for the first time in PA in 2011. From 2011 to 2014, a total of 301 ARV isolations were made from affected PA poultry. The molecular characterization of the Sigma C gene of 114 field isolates, representing most ARV outbreaks, revealed that only 21.93% of the 114 sequenced ARV isolates were in the same genotyping cluster (cluster 1) as the ARV vaccine strains (S1133, 1733, and 2048), whereas 78.07% of the sequenced isolates were in genotyping clusters 2, 3, 4, 5, and 6 (which were distinct from the vaccine strains) and represented newly emerging ARV variants. In particular, genotyping cluster 6 was a new ARV genotype that was identified for the first time in 10 novel PA ARV variants of field isolates.
The survival or clearance of the avian influenza virus (AIV) of subtype H7N2 in its chicken host was evaluated using experimentally infected specific pathogen free (SPF) chickens of different age groups. Birds of different ages were successfully infected with infectious doses ranging between 10(4.7) and 10(5.7) ELD50 per bird. In infected birds, the infective virus was undetectable usually by the third week following exposure. The infectivity or inactivation time of the H7N2 AIV in various environmental conditions was studied using chicken manure, heat, ethanol, pH, and disinfectants. The H7N2 AIV was effectively inactivated by field chicken manure in less than a week at an ambient temperature of 15-20 degrees C. At a pH 2, heating at 56 degrees C, and exposure to 70% ethanol or a specific disinfectant, the AIV infectivity was destroyed in less than 30 min.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.