Acetonitrile, an organic solvent miscible with aqueous phase, has seen thousands of publications in the literature as an efficient deproteinization reagent. The use of acetonitrile for liquid-liquid extraction (LLE), however, has seen very limited application due to its miscibility with aqueous phase. The interest in LLE with acetonitrile has been pursued and reported in the literature by significantly lowering the temperature of the mixture or increasing the salt concentration in the mixture of acetonitrile and aqueous phase, resulting in the separation of the acetonitrile phase from aqueous phase, as observed in conventional LLE. However, very limited application of these methods has been reported. The throughput was limited. In this report, we report a new sample preparation technique, salting-out assisted liquid-liquid extraction with acetonitrile, for high-throughput good laboratory practice sample analysis using LCMS, Two compounds from an approved drug, Kaletra, were used to demonstrate the extractability of drugs from human plasma matrix. Magnesium sulfate was used as the salting-out reagent. Extracts were diluted and then injected into a reversed phase LC-MS/MS system directly. One 96-well plate was extracted with this new approach to evaluate multiple parameters of a good laboratory practice analytical method. Results indicate that the method is rapid, reliable and suitable for regulated bioanalysis. With minimal modification, this approach has been used for high-throughput good laboratory practice analysis of a number of compounds under development at Abbott.
Structure-function studies of antibody-antigen systems include the identification of amino acid residues in the antigen that interact with an antibody and elucidation of their individual contributions to binding affinity. We used fluorescence correlation spectroscopy (FCS) and alanine-scanning mutagenesis to characterize the interactions of brain natriuretic peptide (BNP) with two monoclonal antibodies. Human BNP is a 32 amino acid residue long cyclic polypeptide with the ring structure confined between cysteines in positions 10 and 26. It is an important cardiovascular hormone and a valuable diagnostic cardiac marker. We compare the binding strength of the N-terminus Alexa488-labeled BNP, native cyclic BNP, BNP alanine-substituted mutants, linear BNP, and its short fragments to determine the individual contributions of amino acid residues included in the continuous antigenic epitopes that are recognized by two different monoclonal antibodies raised toward BNP. Implementation of FCS for these studies offers all of the advantages of solution phase measurements, including high sensitivity, simplicity of manipulation with reagents, and elimination of solid phase interferences or separation steps. Significant differences in the molecular masses of the free and antibody bound BNP results in a substantial ( approximately 2.5-times) increase in the diffusion rates. Determination of the binding constants and inhibition effects by measuring the diffusion rates of the ligand at the single molecule level introduces the ultimate opportunity for researching systems where the fluorescence intensity and/or fluorescence anisotropy do not change upon interaction of the ligand with the protein. Monoclonal antibodies 106.3 and BC203 demonstrate high affinities to BNP and bind two distant epitopes forming robust antibody sandwiches. Both antibodies are used in Abbott diagnostic assays on AxSYM, IMx, and Architect platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.