Tim-3 displays critical roles in microenvironment-induced activation and protumoral effects of TAMs in HCC. Interference of Tim-3 might be great potential in HCC therapy.
Purpose-To assess the early predictive power of MRI perfusion and volume parameters, during early treatment of cervical cancer, for primary tumor control and disease-free-survival.Materials and Methods-Three MRI examinations were obtained in 101 patients before and during therapy (at 2-2.5 and 4-5 weeks) for serial dynamic contrast enhanced (DCE) perfusion MRI and 3-dimensional (3D) tumor volume measurement. Plateau Signal Intensity (SI) of the DCE curves for each tumor pixel of all 3 MRI examinations was generated, and pixel-SI distribution histograms were established to characterize the heterogeneous tumor. The degree and quantity of the poorlyperfused tumor subregions, which were represented by low-DCE pixels, was analyzed by using various lower percentiles of SI (SI%) from the pixel histogram. SI% ranged from SI2.5% to SI20% with increments of 2.5%. SI%, mean SI, and 3D-volume of the tumor were correlated with primary tumor control and disease-free-survival, using Student t-test, Kaplan-Meier analysis and log-rank test. The mean post-therapy follow-up time for outcome assessment was 6.8 years (range: 1.2-12.3 years).Results-Tumor volume, mean SI, and SI% showed significant prediction of the long-term clinical outcome, and this prediction was provided as early as 2-2.5 weeks into treatment. An SI5% of <2.05 and residual tumor volume of ≥30 cm 3 in the MRI obtained at 2-2.5 weeks of therapy provided the best prediction of unfavorable 8-year primary tumor control (73% vs. 100%, p=0.006) and diseasefree-survival rate (47% vs. 79%, p=0.001), respectively.Conclusions-Our results show that MRI parameters quantifying perfusion status and residual tumor volume provide very early prediction of primary tumor control and disease-free-survival. This functional imaging based outcome predictor can be obtained in the very early phase of cytotoxic therapy within 2-2.5 weeks of therapy start. The predictive capacity of these MRI parameters, indirectly reflecting the heterogeneous delivery pattern of cytotoxic agents, tumor oxygenation and the bulk of residual presumably therapy-resistant tumor, requires future study.
T-cell immunoglobulin and mucin-domain containing-3 (Tim-3), mediating immune exhaustion in tumor microenvironment, has become a promising target for tumor therapy. However, the exact mechanisms for tumor cell-intrinsic Tim-3 in tumor development and its potential contribution in Tim-3-targeted therapy strategy have not been elucidated yet. In this study, we showed that human liver cancer tissues contained high ratio of Tim-3-expressing hepatocytes, and cytokines rich in tumor microenvironment and HBV involved in Tim-3 upregulation in malignant hepatocytes. We demonstrated that hepatocyte-specific Tim-3 overexpression enhances tumor cell growth, whereas Tim-3 inhibition on malignant hepatocytes by anti-Tim-3 antibodies or RNAi suppresses tumor growth both in vitro and in Tim-3 knockout mice. Mechanistically, the hepatocyte-Tim-3 receptor activates NF-κB phosphorylation, which in turn stimulates IL-6 secretion and STAT3 phosphorylation. Our results identify tumor cell-intrinsic functions of Tim-3 in tumorigenesis and suggest that blocking Tim-3 in tumor cells might contribute to the clinical efficacy of anti-Tim-3 antibody treatment in the future tumor therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.