Tim-3 displays critical roles in microenvironment-induced activation and protumoral effects of TAMs in HCC. Interference of Tim-3 might be great potential in HCC therapy.
TIPE1 (tumor necrosis factor-α-induced protein 8-like 1 or TNFAIP8L1) is a newly identified member of the TIPE (TNFAIP8) family, which play roles in regulating cell death. However, the biologic functions of TIPE1 in physiologic and pathologic conditions are largely unknown. Here, we report the roles of TIPE1 in hepatocellular carcinoma (HCC). Evaluated by immunohistochemical staining, HCC tissues showed significantly downregulated TIPE1 expression compared with adjacent non-tumor tissues, which positively correlated with tumor pathologic grades and patient survival. Using a homograft tumor model in Balb/c mice, we discovered that TIPE1 significantly diminished the growth and tumor weight of murine liver cancer homografts. Consistently, TIPE1 inhibited both cell growth and colony formation ability of cultured HCC cell lines, which was further identified to be due to TIPE1-inducing apoptosis in a caspase-independent, necrostatin-1 (Nec-1)-insensitive manner. Furthermore, mechanistic investigations revealed that TIPE1 interacted with Rac1, and inhibited the activation of Rac1 and its downstream p65 and c-Jun N-terminal kinase pathway. Moreover, overexpression of constitutively active Rac1 partially rescued the apoptosis induced by TIPE1, and Rac1 knockdown significantly restored the deregulated cell growth induced by TIPE1 small interfering RNA. Our findings revealed that TIPE1 induced apoptosis in HCC cells by negatively regulating Rac1 pathway, and loss of TIPE1 might be a new prognostic indicator for HCC patients.
We previously reported the tumor suppressor function of Zinc-fingers and homeoboxes 2 (ZHX2) in hepatocellular carcinoma (HCC). Other studies indicate the association of increased ZHX2 expression with improved response to high dose chemotherapy in multiple myeloma. Here, we aim to test whether increased ZHX2 levels in HCC cells repress multidrug resistance 1(MDR1) expression resulting in increased sensitivity to chemotherapeutic drugs. We showed evidence that increased ZHX2 levels correlated with reduced MDR1 expression and enhanced the cytotoxicity of CDDP and ADM in different HCC cell lines. Consistently, elevated ZHX2 significantly reduced ADM efflux in HepG2 cells and greatly increased the CDDP-mediated suppression of liver tumor growth in vivo. Furthermore, immunohistochemical staining demonstrated the inverse correlation of ZHX2 and MDR1 expression in HCC tissues. Luciferase report assay showed that ZHX2 repressed the MDR1 promoter activity, while knockdown of NF-YA or mutating the NF-Y binding site eliminated this ZHX2-mediated repression of MDR1 transcription. Co-IP and ChIP assay further suggested that ZHX2 interacted with NF-YA and reduced NF-Y binding to the MDR1 promoter. Taken together, we clarify that ZHX2 represses NF-Y-mediated activation of MDR1 transcription and, in doing so, enhances the effects of chemotherapeutics in HCC cells both in vitro and in vivo.
Thiazide diuretics are widely used for the management of hypertension. In recent years, it has been actively debated that there is interchangeability of thiazide‐type diuretics hydrochlorothiazide and thiazide‐like diuretics including indapamide and chlorthalidone for the treatment of hypertension. With the purpose of seeking out the best thiazide diuretic for clinicians, we summarized the existing evidence on the two types of drugs and conducted a meta‐analysis on their efficacy in lowering blood pressure and effects on blood electrolyte, glucose and total cholesterol. Twelve trials were identified: five based on the comparison of indapamide versus hydrochlorothiazide and seven based on the chlorthalidone versus hydrochlorothiazide. In the meta‐analysis of blood pressure reduction, thiazide‐like diuretics seemed to further reduce systolic BP ([95% CI]; −5.59 [−5.69, −5.49]; P < 0.001) and diastolic BP ([95% CI]; −1.98 [−3.29, −0.66]; P = 0.003). Meanwhile, in the analysis of side effects, the incidence of hypokalemia ([95% CI]; 1.58 [0.80, 3.12]; P = 0.19), hyponatremia ([95% CI]; −0.14 [−0.57, 0.30], P = 0.54), change of blood glucose ([95% CI];0.13 [−0.16, 0.41], P = 0.39) and total cholesterol ([95% CI]; 0.13 [−0.16, 0.41], P = 0.39) showed that there is no statistical significant differences between the two groups of drugs. In conclusion, using thiazide‐like diuretics is superior to thiazide‐type diuretics in reducing blood pressure without increasing the incidence of hypokalemia, hyponatraemia and any change of blood glucose and serum total cholesterol.
Angiotensin-converting enzyme 2 (ACE2) is considered a potential therapeutic target of the renin-angiotensin system (RAS) for the treatment of cardiovascular diseases. We aimed to explore the effects of ACE2 overexpression on doxorubicin-induced cardiomyopathy in rats. Rats were randomly divided into treatment and control groups. The rats of treatment group were injected intraperitoneally with 6 doses of doxorubicin (2.5 mg/kg) within a period of two weeks. Two weeks after the initial injection of doxorubicin, these rats were randomly divided into Mock, Ad-EGFP, Ad-ACE2, and Cilazapril groups. The rats of Ad-EGFP and Ad-ACE2 groups received intramyocardial injection of Ad-EGFP and Ad-ACE2, respectively. The rats of Cilazapril group received cilazapril (10 mg/kg/day) via intragastric intubation. Apoptosis, inflammation, oxidative stress, cardiac function, the extent of myocardial fibrosis, and levels of ACE2, ACE, angiotensin II (AngII), and angiotensin (1–7) were evaluated. Four weeks after ACE2 gene transfer, the Ad-ACE2 group showed not only reduced apoptosis, inflammatory response, oxidative stress, left ventricular (LV) volume, extent of myocardial fibrosis and mortality of rats, but also increased LV ejection fraction and ACE2 expression level compared with the Mock and Ad-EGFP groups. ACE2 overexpression was superior to cilazapril in improving doxorubicin-induced cardiomyopathy. The putative mechanisms may involve activation of the AMPK and PI3K-AKT pathways, inhibition of the ERK pathway, decrease of TGF-β1 expression, and interactions of shifting RAS components, such as decreased myocardium AngII levels, increased myocardium Ang (1–7) levels, and reduced ACE expression. Thus, ACE2 may be a novel therapeutic approach to prevent and treat doxorubicin-induced cardiomyopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.