This paper presents a low quiescent current, highly stable low-drop out (LDO) regulator. In order to reduce capacitor value and control frequency response peak, capacitor multipliers are adopted in the compensation circuit with mathematic calculations. The phase margin is adequate when the load current is 0.1 or 150 mA. Fabricated in an XFAB 0.6 m CMOS process, the LDO produces 12.2 mV (0.7%) overshoot voltage while the current changes at 770 mA/100 s with a capacitor load of 10 F.
Valve as an important part of the gas distribution mechanism, is an crucial part of the engine. When the engine works, the valve is subjected to high temperature, high impact, frictional wear and corrosion and other harsh working conditions, and the reliable and durable valve has an important impact on the safety and reliability of the engine. In this paper, a model of four-stroke marine diesel engine valve is used as the research object, and the intake valve set and exhaust valve set models are established respectively. Heat transfer simulation and failure analysis of inlet and exhaust valves of different structures and materials under different operating conditions were carried out using finite element analysis. The results show that the different valve structures and manufacturing materials have different effects on the reliability of the valves; Changing the valve structures and choosing different valve manufacturing materials have a greater impact on the heat transfer and deformation, thus affecting the overall reliability of the valves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.