With the development of industrialization and urbanization, cities have become the main carriers of economic activities. However, the long-term development of cities has also caused damage to resources and the environment. Hence, objective and scientific evaluation of urban low-carbon sustainable development capacity is very important. An index system of urban low-carbon sustainable development capability is constructed in this paper, and a TOPSIS-BP neural network model is established to evaluate the low-carbon sustainable development capability of Beijing, Shanghai, Shenzhen, and Guangzhou in China. At the same time, the difference degree of low-carbon sustainable development level in these four cities is analyzed by standard deviation and coefficient of variation, and the influencing factors of urban low-carbon sustainable development ability are extracted by grey correlation analysis. The results show that (1) the capability of low-carbon sustainable development in four cities is rising and the difference of low-carbon sustainable development capability is decreasing; (2) the general view that the higher the general investment in low-carbon sustainable development, the higher the level of low-carbon sustainable development in cities has not been verified; (3) with the change of time series, the factors affecting the capability of low-carbon sustainable development in the same city are different and the influence of the same factor on the capability of low-carbon sustainable development in different cities is different.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.