Located in reservoir area of Dahuaqiao Hydropower Station in Lancang River, the Dahua ancient deposit landslide exhibits high possibility of reactivation due to reservoir impoundment. In this study, physical model tests are conducted to investigate the variations of groundwater, deformation, and failure process of the landslide under different fluctuation speeds of reservoir water level. Influence of groundwater on landslide stability when reservoir water level fluctuating is analyzed then. Results indicate that the seepage pressure caused by water level difference can increase landslide displacement. During the dropping process of reservoir water level, the relationship between landslide displacement and water level difference can be described by a power function model. Groundwater has negative effects on stability of landslides, and the damage is characterized by traction landslide. More attentions should be paid on the displacement of the front edge of the landslide during the first rise and drop of reservoir water level. The study provides indispensable information for scheduling reservoir water level in the Dahuaqiao and others similar reservoir areas, thus having vital importance.
PurposeThe objective of this paper is to provide a better understanding of the effect of irregular columnar jointed structure on the permeability and flow characteristics of rock masses.Design/methodology/approachAn efficient numerical procedure is proposed to investigate the permeability and fluid flow in columnar jointed rock masses (CJRMs), of which the columnar jointed networks are generated by a modified constrained centroid Voronoi algorithm according to the field statistical results. The fractures are represented explicitly by using the lower-dimensional zero thickness elements. And the modeling scheme is validated by a benchmark test for flow in fractured porous media. The effective permeability and representative elementary volume (REV) size of CJRMs are estimated using finite element method (FEM). The influences of joint density and variation coefficient of columnar joint structure on the permeability of the rock mass are discussed.FindingsThe simulation results indicate that the permeability is scale-dependent and tends to be stable with increase of model size. The hydraulic REV size is determined as 3.5 m for CJRMs in the present study. Moreover, the joint density is a dominant factor affecting the permeability of CJRMs. The average permeability of columnar jointed structures increases linearly with the joint density under the same REV size, while the influence from the coefficient of variation can be neglected.Originality/valueThe present paper investigates the REV size of the CJRMs and the effect of joint parameters on the permeability. The proposed method and the results obtained are useful on understanding the hydraulic characteristic of the irregular CJRMs in engineering projects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.