Located in reservoir area of Dahuaqiao Hydropower Station in Lancang River, the Dahua ancient deposit landslide exhibits high possibility of reactivation due to reservoir impoundment. In this study, physical model tests are conducted to investigate the variations of groundwater, deformation, and failure process of the landslide under different fluctuation speeds of reservoir water level. Influence of groundwater on landslide stability when reservoir water level fluctuating is analyzed then. Results indicate that the seepage pressure caused by water level difference can increase landslide displacement. During the dropping process of reservoir water level, the relationship between landslide displacement and water level difference can be described by a power function model. Groundwater has negative effects on stability of landslides, and the damage is characterized by traction landslide. More attentions should be paid on the displacement of the front edge of the landslide during the first rise and drop of reservoir water level. The study provides indispensable information for scheduling reservoir water level in the Dahuaqiao and others similar reservoir areas, thus having vital importance.
Water content has a significant effect on the creep properties of soil-rock mixtures (SRM). Multi-loading shear creep tests are carried out on SRM samples with different water contents. The test results show that deformation gradually increase with increasing water content, while long-term strength gradually decrease with increasing water content. The deformation mechanism shows that increasing of water content causes the change of rock particles at on the shear surface from fracture to rotation. Based on the creep test results, a modified Burgers model considering the water content is proposed by the empirical relationship between the parameters of the traditional Burgers model and the water content. And the results predicted by the modified Burgers model agree well quite well with the experimental creep data.
Located in reservoir area of Dahuaqiao Hydropower Station in Lancang River, the Dahua ancient deposit landslide exhibits high possibility of reactivation due to reservoir impoundment. In this study, physical model tests are conducted to investigate the variations of groundwater, deformation, and failure process of the landslide under different fluctuation speeds of reservoir water level. Influence of groundwater on landslide stability when reservoir water level fluctuating is analyzed then. Results indicate that the seepage pressure caused by water level difference can increase landslide displacement. During the dropping process of reservoir water level, the relationship between landslide displacement and water level difference can be described by a power function model. Groundwater has negative effects on stability of landslides, and the damage is characterized by traction landslide. More attentions should be paid on the displacement of the front edge of the landslide during the first rise and drop of reservoir water level. The study provides indispensable information for scheduling reservoir water level in the Dahuaqiao and others similar reservoir areas, thus having vital importance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.