S-ROM stem combined with transverse subtrochanteric shortening osteotomy in THA for patients with Crowe type IV DDH has good clinical results with small risk of complications.
Objective To evaluate the midterm results of the cementless S‐ROM modular femoral stem used with subtrochanteric transverse shortening osteotomy for the treatment of high hip dislocation secondary to hip pyogenic arthritis. Methods We retrospectively reviewed the data of 49 patients (49 hips) with an average infection quiescent period of 37.4 years who underwent cementless total hip arthroplasty (THA) with simultaneous subtrochanteric transverse shortening osteotomy from July 2008 to June 2012. There were 23 men and 26 women with a mean age of 44.3 years at the time of surgery. The following clinical outcomes were evaluated: the Western Ontario and McMaster Universities Arthritis Index (WOMAC) score, Harris hip score (HSS), modified Merle d'Aubigne‐Postel hip (MAP) score, low back pain visual analog scale score, 12‐item short‐form health survey questionnaire score, limp, and Trendelenburg sign. Radiographic outcomes and complications were also evaluated. Results The mean follow‐up period was 8.7 years (range, 5.5–10 years). No infection recurrence was observed after THA. The average HSS significantly improved from 45.0 to 84.8. The WOMAC score improved from 70.1 ± 3.5 (range, 65–76) to 43.1 ± 13.4 (range, 21–67). The modified MAP score improved from 5.9 ± 1.9 (range, 3–9) to 14.3 ± 2.4 (range, 11–18). The low back pain visual analog scale score, 12‐item short‐form health survey questionnaire score, limp, and Trendelenburg sign also improved significantly. The average limb length discrepancy decreased from 39.6 mm (range, 30–55 mm) to 7.2 mm (range, 0–22 mm). Two patients had temporary sciatic nerve paralysis but recovered within 6 months without any functional defects; one had an intraoperative fracture fixed by cerclage wires. One hip required revision surgery because of femoral stem aseptic loosening. Conclusions The cementless S‐ROM modular femoral stem used with subtrochanteric transverse shortening osteotomy is safe and effective for high hip dislocation secondary to pyogenic arthritis and provides satisfactory midterm results. Significant improvements in clinical function were observed, as were high rates of stable fixation of the cementless implant, restoration of more normal limb lengths, and a low incidence of complications.
Objective To explore the feasibility of 3D printed customized guides assisting the precise drilling of Kirschner wires in subtalar joint arthrodesis. Methods We retrospectively reviewed the data of 29 patients (30 subtalar joints) who underwent subtalar joint arthrodesis between 1 July 2013 and 31 December 2017. The customized guides were designed on a full‐scale 3D polylactic acid model made from computed tomography (CT) data of patients by Model Intestinal Microflora in Computer Simulation (MIMICS) software, which were manufactured by 3D printing technology. A total of 14 joints used customized guides (experimental group); the remained 16 joints used the traditional method (control group). The time of drilling the Kirschner wires to the correct position, the time of subtalar fusion, American Orthopaedic Foot & Ankle Society (AOFAS) scores, and complications were evaluated in both groups. Results All customized guides were successfully manufactured. In the experimental group, it took 2.1 ± 0.7 min to drill the Kirschner wire to the satisfactory position, and 2 cases needed to be re‐drilled; in the control group, it took 4.6 ± 1.9 min to drill the Kirschner wire to the satisfactory position (P < 0.05), and 8 cases needed to be re‐drilled. No serious complications occurred in both groups during and after the surgery. Postoperative radiographic fusion was confirmed in all cases. No significant difference was observed in the fusion time and AOFAS scores 1 year postoperatively between the two groups (P > 0.05). Conclusion It is safe to apply 3D‐printed customized guides for subtalar joint arthrodesis, which can assist the accurate drilling of Kirschner wires into the appropriate position according to the preoperative plan, and reduce the operation time as well as intraoperative radiation.
Objective: Total knee arthroplasty (TKA) is one of the most universal and effective means for treating terminal stage osteoarthritis (OA) of knee. Accurate intramedullary guide of femur is the basis for the distal femoral cuts. Determining the surgical transepicondylar axis (sTEA) is the key to reconstruction of the femoral rotational alignment, because the correct rotational alignment can place the femoral component in the right position, balance the flexion gap so that the inner and outer tension is equal, get stability during the flexion process of the knee, and enhance the quality of life of patients. With the development of three-dimensional printing (3DP) technology in the medical domain, the application of patient-specific instrumentation (PSI) in arthroplasty has become more common. The aim of this study was to evaluate the accuracy of a novel 3D-printed patient-specific intramedullary guide to control femoral component rotation in TKA.Methods: Eighty patients (65 females and 15 males) with knee OA were included in this prospective randomized study. The patients were divided into two groups by random number table method, 40 in each group. TKA assisted by PSI (PSI group) and conventional TKA (conventional group) was performed respectively. Clinical outcomes [operation time, postoperative drainage volume, duration of drainage, Hospital for Special Surgery knee score (HSS), American Knee Society knee score (AKS)] and radiological outcomes [hip-knee-ankle angle (HKA), posterior condylar angle (PCA), patella transverse axis-femoral transepicondylar axis angle (PFA), depth of intramedullary guide] were compared between and within the two groups.Results: PSI group had less postoperative drainage volume but longer operation time than the conventional group (P < 0.05). The AKS and HSS scores after surgery were improved compared with those before surgery in each group (P < 0.05). However, there was no significant difference in the duration of drainage and range of motion (ROM) after surgery between the two groups. For the radiological results, the HKA and PFA were improved after surgery in both groups (P < 0.05).The postoperative PFA and PCA of the PSI group were closer to 0 , which was better than that of the conventional group (P < 0.05). The depth of intramedullary guide in the PSI group was less than the conventional group (P < 0.05). But there was no significant difference in HKA before and after surgery between the two groups as well as the preoperative PFA. Conclusion:The short-term clinical efficacy of TKA assisted by PSI was similar to the conventional TKA. Although TKA assisted by PSI spent more time during operation, it could assist in intramedullary guide and align femoral rotation more accurately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.