Numerous research reports have witnessed dramatic advancements in cancer therapeutic approaches through immunotherapy. Blocking immunological checkpoint pathways (mechanisms employed by malignant cells to disguise themselves as normal human body components) has emerged as a viable strategy for developing anticancer immunity. Through the development of effective immune checkpoint inhibitors (ICIs) in multiple carcinomas, advances in cancer immunity have expedited a major breakthrough in cancer therapy. Blocking a variety of ICIs, such as PD-1 (programmed cell death-1), programmed cell death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) has improved the immune system’s efficacy in combating cancer cells. Recent studies also supported the fact that ICIs combined with other potent antitumor candidates, such as angiogenic agents, could be a solid promising chemopreventive therapeutic approach in improving the effectiveness of immune checkpoint inhibitors. Immune checkpoint blockade has aided antiangiogenesis by lowering vascular endothelial growth factor expression and alleviating hypoxia. Our review summarized recent advances and clinical improvements in immune checkpoint blocking tactics, including combinatorial treatment of immunogenic cell death (ICD) inducers with ICIs, which may aid future researchers in creating more effective cancer-fighting strategies.
Cancer is a complex ailment orchestrated by numerous intrinsic and extrinsic pathways. Recent research has displayed a deep interest in developing plant-based cancer therapeutics for better management of the disease and limited side effects. A wide range of plant-derived compounds have been reported for their anticancer potential in the quest of finding an effective therapeutic approach. Rutin (vitamin P) is a low-molecular weight flavonoid glycoside (polyphenolic compound), abundantly present in various vegetables, fruits (especially berries and citrus fruits), and medicinal herbs. Numerous studies have delineated several pharmacological properties of rutin such as its antiprotozoal, antibacterial, anti-inflammatory, antitumor, antiviral, antiallergic, vasoactive, cytoprotective, antispasmodic, hypolipidemic, antihypertensive, and antiplatelet properties. Specifically, rutin-mediated anticancerous activities have been reported in several cancerous cell lines, but the most common scientific evidence, encompassing several molecular processes and interactions, including apoptosis pathway regulation, aberrant cell signaling pathways, and oncogenic genes, has not been thoroughly studied. In this direction, we attempted to project rutin-mediated oncogenic pathway regulation in various carcinomas. Additionally, we also incorporated advanced research that has uncovered the notable potential of rutin in the modulation of several key cellular functions via interaction with mRNAs, with major emphasis on elucidating direct miRNA targets of rutin as well as the process needed to transform these approaches for developing novel therapeutic interventions for the treatment of several cancers.
Extracellular vesicles are small single lipid membrane entity secreted by eukaryotic and prokaryotic cells and play an important role in intercellular signaling and nutrient transport. The last few decades have witnessed a plethora of research on these vesicles owing to their ability to answer many hidden facts at the supramolecular level. These extracellular vesicles have attracted the researchers because they act as shuttle agents to transfer biomolecules/drugs between cells. Recently, studies have shown the application of exosomes in tumor therapy and infectious disease control. The present review article shows the importance of exosomes in cancer biology and infectious disease diagnoses and therapy and provides comprehensive account of exosomes biogenesis, extraction, molecular profiling, and application in drug delivery.
In this work, Pani and Pani@g-C3N4 was synthesized by in situ oxidative polymerization methodology of aniline, in the presence of g-C3N4. The as prepared Pani@g-C3N4 was characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction (XRD). The morphological analysis showed well dispersed Pani in g-C3N4, as well as the coating of Pani on g-C3N4. The XRD further revealed this, and peaks of Pani as well as g-C3N4 was observed, thereby suggesting successful synthesis of the composite. The DC electrical conductivity studies under isothermal and cyclic aging conditions showed high stability of composites over 100 °C. Further, the synthesized composite material proved to be an excellent antimicrobial agent against both type i.e., gram positive Streptococcus pneumoniae and negative bacteria Escherichia coli. In the zone inhibition assay 18 ± 0.5, 16 ± 0.75 and 20 ± 0.5, 22 ± 0.5 mm zone diameter were found against E. coli and S. pneumoniae in presence of pure g-C3N4 and Pani@g-C3N4 at 50 µg concentrations, respectively. Further antimicrobial activity in the presence of sunlight in aqueous medium showed that Pani@g-C3N4 is more potent than pure g-C3N4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.