3D printing technologies have been considered an important technology due to the ease manufacturing of objects, freedom of design, waste minimization, and fast prototyping. In chemistry, this technology potentializes the fabrication of conductive electrodes in large scale for sensing applications. Herein, we reported the modification of a 3D printed graphene electrode with Prussian blue. The modified electrode (3DGrE/PB) was characterized by microscopy (SEM and AFM) and spectroscopic techniques, and its electrochemical properties were compared to the traditional electrodes: glassy carbon, gold, and platinum. The 3DGrE/PB was used in the sensing of hydrogen peroxide in real-world samples of milk and mouthwash, and the results obtained according to the technique of batch-injection analysis were satisfactory for the concentration range typically found in such samples. Thus, 3DGrE/PB can be used as a new platform for sensing of molecular targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.