In order to realize the prediction of freeway travel time, a short-term travel time prediction model based on LightGBM (Light Gradient Boosting Machine) is proposed under the influence of weather factors, time period factors, and traffic factors. These factors are called as the features used for increase prediction accuracy. The travel time of a single vehicle is determined by license plate recognition data of two adjacent video monitors in Shaoxing section of Shanghai-Hangzhou-Ningbo Freeway, and a better travel time data set is constructed by data preprocessing. The feature data are determined by Pearson correlation. Based on the analysis of main optimization parameters in LightGBM, the short-term average travel time is predicted, the MAE (Mean Absolute Error) and MAPE (Mean Absolute Percentage Error) obtained by experiments are satisfying, indicating that LightGBM model has high accuracy and good fit. Finally, through comparison with KNN (K-Nearest Neighbor) model and GBDT (Gradient Boosting Decision Tree) model, the prediction accuracy and training speed both show that LightGBM has good advantages in predicting short-term freeway travel time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.