Translation of chirality and asymmetry across structural motifs and length scales plays a fundamental role in nature, enabling unique functionalities in contexts ranging from biological systems to synthetic materials. Here, we introduce a structural chirality transfer across the organic–inorganic interface in two-dimensional hybrid perovskites using appropriate chiral organic cations. The preferred molecular configuration of the chiral spacer cations, R-(+)- or S-(−)-1-(1-naphthyl)ethylammonium and their asymmetric hydrogen-bonding interactions with lead bromide-based layers cause symmetry-breaking helical distortions in the inorganic layers, otherwise absent when employing a racemic mixture of organic spacers. First-principles modeling predicts a substantial bulk Rashba-Dresselhaus spin-splitting in the inorganic-derived conduction band with opposite spin textures between R- and S-hybrids due to the broken inversion symmetry and strong spin-orbit coupling. The ability to break symmetry using chirality transfer from one structural unit to another provides a synthetic design paradigm for emergent properties, including Rashba-Dresselhaus spin-polarization for hybrid perovskite spintronics and related applications.
Recently the hybrid organic-inorganic trihalide perovskites have shown remarkable performance as active layers in photovoltaic and other optoelectronic devices. However, their spin characteristic properties have not been fully studied, although due to the relatively large spin-orbit coupling these materials may show great promise for spintronic applications. Here we demonstrate spin-polarized carrier injection into methylammonium lead bromide films from metallic ferromagnetic electrodes in two spintronic-based devices: a ‘spin light emitting diode’ that results in circularly polarized electroluminescence emission; and a ‘vertical spin valve’ that shows giant magnetoresistance. In addition, we also apply a magnetic field perpendicular to the injected spins orientation for measuring the ‘Hanle effect’, from which we obtain a relatively long spin lifetime for the electrically injected carriers. Our measurements initiate the field of hybrid perovskites spin-related optoelectronic applications.
The two-dimensional layered semiconducting tungsten disulfide (WS2) film exhibits great promising prospects in the photoelectrical applications because of its unique photoelectrical conversion property. Herein, in this paper, we report the simple and scalable fabrication of homogeneous, large-size and transferable WS2 films with tens-of-nanometers thickness through magnetron sputtering and post annealing process. The produced WS2 films with low resistance (4.2 kΩ) are used to fabricate broadband sensitive photodetectors in the ultraviolet to visible region. The photodetectors exhibit excellent photoresponse properties, with a high responsivity of 53.3 A/W and a high detectivity of 1.22 × 1011 Jones at 365 nm. The strategy reported paves new way towards the large scale growth of transferable high quality, uniform WS2 films for various important applications including high performance photodetectors, solar cell, photoelectrochemical cell and so on.
The newly discovered Group-10 transition metal dichalcogenides (TMDs) like PtSe 2 have promising applications in high-performance microelectronic and optoelectronic devices due to their high carrier mobilities, widely tunable bandages and ultrastabilities. However, the optoelectronic performance of broadband PtSe 2 photodetectors integrated with silicon remains undiscovered. Here, we report the successful preparation of large-scale, uniform and vertically grown PtSe 2 films by simple selenization method for the design of a PtSe 2 /Si nanowire array heterostructure, which exhibited a very good photoresponsivity of 12.65 A/W, a high specific detectivity of 2.5 × 10 13 Jones at −5 V and fast rise/fall times of 10.1/19.5 μs at 10 kHz without degradation while being capable of responding to high frequencies of up to 120 kHz. Our work has demonstrated the compatibility of PtSe 2 with the existing silicon technology and ultrabroad band detection ranging from deep ultraviolet to optical telecommunication wavelengths, which can largely cover the limitations of silicon detectors. Further investigation of the device revealed pronounced photovoltaic behavior at 0 V, making it capable of operating as a self-powered photodetector. Overall, this representative PtSe 2 /Si nanowire array-based photodetector offers great potential for applications in next-generation optoelectronic and electronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.