Mitochondrial dynamic disorder is involved in myocardial ischemia/reperfusion (I/R) injury. To explore the effect of mitochondrial calcium uniporter (MCU) on mitochondrial dynamic imbalance under I/R and its related signal pathways, a mouse myocardial I/R model and hypoxia/reoxygenation model of mouse cardiomyocytes were established. The expression of MCU during I/R increased and related to myocardial injury, enhancement of mitochondrial fission, inhibition of mitochondrial fusion and mitophagy. Suppressing MCU functions by Ru360 during I/R could reduce myocardial infarction area and cardiomyocyte apoptosis, alleviate mitochondrial fission and restore mitochondrial fusion and mitophagy. However, spermine administration, which could enhance MCU function, deteriorated the above‐mentioned myocardial cell injury and mitochondrial dynamic imbalanced. In addition, up‐regulation of MCU promoted the expression and activation of calpain‐1/2 and down‐regulated the expression of Optic atrophy type 1 (OPA1). Meantime, in transgenic mice (overexpression calpastatin, the endogenous inhibitor of calpain) I/R model and OPA1 knock‐down cultured cell. In I/R models of transgenic mice over‐expressing calpastatin, which is the endogenous inhibitor of calpain, and in H/R models with siOPA1 transfection, inhibition of calpains could enhance mitochondrial fusion and mitophagy, and inhibit excessive mitochondrion fission and apoptosis through OPA1. Therefore, we conclude that during I/R, MCU up‐regulation induces calpain activation, which down‐regulates OPA1, consequently leading to mitochondrial dynamic imbalance.
Gastric cancer (GC) is a malignancy of the lining of the stomach and is prone to distant metastasis, which involves a variety of complex molecules. The S100 proteins are a family of calcium‐binding cytosolic proteins that possess a wide range of intracellular and extracellular functions and play pivotal roles in the invasion and migration of tumour cells. Among these, S100A10 is known to be overexpressed in GC. Lysine succinylation, a recently identified form of protein post‐translational modification, is an important regulator of cellular processes. Here, we demonstrated that S100A10 was succinylated at lysine residue 47 (K47), and levels of succinylated S100A10 were increased in human GC. Moreover, K47 succinylation of S100A10 was stabilized by suppression of ubiquitylation and subsequent proteasomal degradation. Furthermore, carnitine palmitoyltransferase 1A (CPT1A) was found to function as a lysine succinyltransferase that interacts with S100A10. Succinylation of S100A10 is regulated by CPT1A, while desuccinylation is regulated by SIRT5. Overexpression of a succinylation mimetic mutant, K47E S100A10, increased cell invasion and migration. Taken together, this study reveals a novel mechanism of S100A10 accumulation mediated by succinylation in GC, which promotes GC progression and is regulated by the succinyltransferase CPT1A and SIRT5‐mediated desuccinylation.
Inflammation is an important process involved in several cardiovascular diseases (CVDs), and nod‐like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a vital player in innate immunity and inflammation. In this review, we aim to provide a comprehensive summary of the current knowledge on the role and involvement of NLRP3 inflammasome in the pathogenesis and treatment of CVDs. NLRP3 inflammasome functions as a molecular platform, and triggers the activation of caspase‐1 and cleavage of pro‐IL‐1β, pro‐IL‐18, and gasdermin D (GSDMD). Cleaved NT‐GSDMD forms pores in the cell membrane and initiates pyroptosis, inducing cell death and release of many intracellular pro‐inflammatory molecules. NLRP3 inflammasome activation is triggered via inter‐related pathways downstream of K+ efflux, lysosomal disruption, and mitochondrial dysfunction. In addition, the Golgi apparatus and noncoding RNAs are gradually being recognized to play important roles in NLRP3 inflammasome activation. Many investigations have revealed the association between NLRP3 inflammasome and CVDs, including atherosclerosis, ischemia/reperfusion (I/R) injury and heart failure induced by pressure overload or cardiomyopathy. Some existing medications, including orthodox and natural medicines, used for CVD treatment have been newly discovered to act via NLRP3 inflammasome. In addition, NLRP3 inflammasome pathway components such as NLRP3, caspase‐1, and IL‐1β may be considered as novel therapeutic targets for CVDs. Thus, NLRP3 inflammasome is a key molecule involved in the pathogenesis of CVDs, and further research focused on development of NLRP3 inflammasome‐based targeted therapies for CVDs and the clinical evaluation of these therapies is essential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.