Tempol (4-hydroxy-2,2,6,6-Tetramethylpiperidine-1-oxyl, TPL), a nitroxide compound, inhibits proliferation and increases the vulnerability of cancer cells to apoptosis induced by cytotoxic agents. However, the molecular mechanism of TPL inhibiting cancer cell proliferation has not been fully understood. In this study, we evaluated the metabolic effect of TPL on cancer cells and explored its cancer therapeutic potential. Extracellular flow assays showed that TPL inhibited cellular basal and maximal oxygen consumption rates of mitochondrial. 13C metabolic flux analysis showed that TPL treatment had minimal effect on glycolysis. However, we found that TPL inhibits glutamine metabolism by interfering with the oxidative tricarboxylic acid cycle (TCA) process and reductive glutamine process. We found that the inhibitory effect of TPL on metabolism occurs mainly on the step from citrate to α-ketoglutarate or vice versa. We also found that activity of isocitrate dehydrogenase IDH1 and IDH2, the key enzymes in TCA, were inhibited by TPL treatment. In xenograft mouse model, TPL treatment reduced tumor growth by inhibiting cellular proliferation of xenograft tumors. Thus, we provided a mechanism of TPL inhibiting cancer cell proliferation by interfering with glutamine utilization that is important for survival and proliferation of cancer cells. The study may help the development of a therapeutic strategy of TPL combined with other anticancer medicines.
Gene therapy is a promising strategy for treatments of various diseases. Efficient and safe introduction of therapeutic genes into targeted cells is essential to realize functions of the genes. High-molecular-weight polyethylenimines (HMW PEIs) including 25 kDa branched PEI and 22 kDa linear PEI are widely used for in vitro gene transfection. However, high-gene transfection efficiency is usually accompanied with high cytotoxicity, which hampers their further clinical study. On the contrary, low-molecular-weight polyethylenimines (LMW PEIs) such as 1.8 kDa PEI and 800 Da PEI show good biocompatibility but their applications are limited by the poor DNA condensation capability. In this study, we find that 1.8 kDa PEI, but not 800 Da PEI combined with low-dose 25 kDa PEI could significantly promote gene transfection with low cytotoxicity. Plasmids encoding enhanced green fluorescence protein (EGFP) were delivered by the combined PEI and gene transfection efficiency was evaluated by microscopic observation and flow cytometry. Parameters including concentrations of 25 kDa PEI and 1.8 kDa PEI and preparation ways were further optimized. This study presents an efficient and safe combined PEI-based non-viral gene delivery strategy with potential for in vivo applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.