After severe hair cell loss, secondary degeneration of spiral ganglion cells (SGCs) is observed-a gradual process that spans years in humans but only takes weeks in guinea pigs. Being the target for cochlear implants (CIs), the physiological state of the SGCs is important for the effectiveness of a CI. For assessment of the nerve's state, focus has generally been on its response threshold. Our goal was to add a more detailed characterization of SGC functionality. To this end, the electrically evoked compound action potential (eCAP) was recorded in normal-hearing guinea pigs and guinea pigs that were deafened 2 or 6 weeks prior to the experiments. We evaluated changes in eCAP characteristics when the phase duration (PD) and inter-phase gap (IPG) of a biphasic current pulse were varied. We correlated the magnitude of these changes to quantified histological measures of neurodegeneration (SGC packing density and SGC size). The maximum eCAP amplitude, derived from the input-output function, decreased after deafening, and increased with both PD and IPG. The eCAP threshold did not change after deafening, and decreased with increasing PD and IPG. The dynamic range was wider for the 6-weeks-deaf animals than for the other two groups. Excitability increased with IPG (steeper slope of the input-output function and lower stimulation level at the half-maximum eCAP amplitude), but to a lesser extent for the deafened animals than for normal-hearing controls. The latency was shorter for the 6-weeks-deaf animals than for the other two groups. For several of these eCAP characteristics, the effect size of IPG correlated well with histological measures of degeneration, whereas effect size of PD did not. These correlations depend on the use of high current levels, which could limit clinical application. Nevertheless, their potential of these correlations towards assessment of the condition of the auditory nerve may be of great benefit to clinical diagnostics and prognosis in cochlear implant recipients.
1. We studied the topographic organization of the response areas obtained from single- and multiunit recordings along the isofrequency planes of the primary auditory cortex in the barbiturate-anesthetized ferret. 2. Using a two-tone stimulus, we determined the excitatory and inhibitory portions of the response areas and then parameterized them in terms of an asymmetry index. The index measures the balance of excitatory and inhibitory influences around the best frequency (BF). 3. The sensitivity of responses to the direction of a frequency-modulated (FM) tone was tested and found to correlate strongly with the asymmetry index of the response areas. Specifically, cells with strong inhibition from frequencies above the BF preferred upward sweeps, and those from frequencies below the BF preferred downward sweeps. 4. Responses to spectrally shaped noise were also consistent with the asymmetry of the response areas. For instance, cells that were strongly inhibited by frequencies higher than the BF responded best to stimuli that contained least spectral energy above the BF, i.e., stimuli with the opposite asymmetry. 5. Columnar organization of the response area types was demonstrated in 66 single units from 16 penetrations. Consistent with this finding, it was also shown that response area asymmetry measured from recordings of a cluster of cells corresponded closely with those measured from its single-unit constituents. Thus, in a local region, most cells exhibited similar response area types and other response features, e.g., FM directional sensitivity. 6. The distribution of the asymmetry index values along the isofrequency planes revealed systematic changes in the symmetry of the response areas. At the center, response areas with narrow and symmetric inhibitory sidebands predominated. These gave way to asymmetric inhibition, with high-frequency inhibition (relative to the BF) becoming more effective caudally and low-frequency inhibition more effective rostrally. These response types tended to cluster along repeated bands that paralleled the tonotopic axis. 7. Response features that correlated with the response area types were also mapped along the isofrequency planes. Thus, in four animals, a map of FM directional sensitivity was shown to be superimposed on the response area map. Similarly, it was demonstrated in six animals that the spectral gradient of the most effective noise stimulus varied systematically along the isofrequency planes. 8. One functional implication of the response area organization is that cortical responses encode the locally averaged gradient of the acoustic spectrum by their differential distribution along the isofrequency planes. This enhances the representation of such features as the symmetry of spectral peaks and edges and the spectral envelope.(ABSTRACT TRUNCATED AT 400 WORDS)
Multi-unit responses to frequency-modulated (FM) sweeps were studied in the primary auditory cortex of ferrets using six different stimulation paradigms. In particular, the differences between the responses to linear FM sweeps (where frequency changes linearly with time) and logarithmic FM sweeps (where frequency changes exponentially with time) were emphasized. Some general features of the responses to FM sweeps are independent of the exact details of the frequency trajectory. Both for linear and for logarithmic FM sweeps, a short burst of spikes occurred when the sweep reached a triggering frequency close to the best frequency of the cluster. The neuronal preference for FM velocity was also independent of frequency trajectory. Thus, clusters that responded best to slow logarithmic FM also preferred slow linear FM and vice versa. Consequently, topographic distributions of velocity preference were roughly independent of the stimulation paradigm. Other characteristics of the responses, however, depended on the exact details of the frequency trajectory. A significant number of clusters showed large differences in directional sensitivity between linear and logarithmic FM sweeps; these differences depended on the velocity preference of the clusters in some paradigms but not in others. Consequently, topographic distributions of directional sensitivity differed between linear and logarithmic paradigms. In conclusion, some characteristics of cluster responses to FM sweeps depend on the exact details of the stimulation paradigm and are not 'invariants' of the cluster.
The midbrain inferior colliculus (IC) is implicated in coding sound location, but evidence from behaving primates is scarce. Here we report single-unit responses to broadband sounds that were systematically varied within the two-dimensional (2D) frontal hemifield, as well as in sound level, while monkeys fixated a central visual target.Results show that IC neurons are broadly tuned to both sound-source azimuth and level in a way that can be approximated by multiplicative, planar modulation of the firing rate of the cell. In addition, a fraction of neurons also responded to elevation. This tuning, however, was more varied: some neurons were sensitive to a specific elevation; others responded to elevation in a monotonic way. Multiple-linear regression parameters varied from cell to cell, but the only topography encountered was a dorsoventral tonotopy.In a second experiment, we presented sounds from straight ahead while monkeys fixated visual targets at different positions. We found that auditory responses in a fraction of IC cells were weakly, but systematically, modulated by 2D eye position. This modulation was absent in the spontaneous firing rates, again suggesting a multiplicative interaction of acoustic and eye-position inputs. Tuning parameters to sound frequency, location, intensity, and eye position were uncorrelated. On the basis of simulations with a simple neural network model, we suggest that the population of IC cells could encode the head-centered 2D sound location and enable a direct transformation of this signal into the eye-centered topographic motor map of the superior colliculus. Both signals are required to generate rapid eye-head orienting movements toward sounds.
Exogenous delivery of neurotrophic factors into the cochlea of deafened animals rescues spiral ganglion cells (SGCs) from degeneration. To be clinically relevant for human cochlear implant candidates, the protective effect of neurotrophins should persist after cessation of treatment and the treated SGCs should remain functional. In this study, the survival and functionality of SGCs were investigated after temporary treatment with brain-derived neurotrophic factor (BDNF). Guinea pigs in the experimental group were deafened, and 2 weeks later, the right cochleae were implanted with an electrode array and drug delivery cannula. BDNF was administered to the implanted cochleae during a 4-week period via a mini-osmotic pump. After completion of the treatment, the osmotic pumps were removed. Two weeks later, the animals were killed and the survival of SGCs was analyzed. To monitor the functionality of the auditory nerve, electrically evoked auditory brainstem responses (eABRs) were recorded in awake animals throughout the experiment. BDNF treatment resulted in enhanced survival of SGCs 2 weeks after cessation of the treatment and prevented the decreases in size and circularity that are seen in the untreated contralateral cochleae. The amplitude of the suprathreshold eABR response in BDNF-treated animals was significantly larger than in deafened control animals and comparable to that in normal-hearing control animals. The amplitude in the BDNF-treated group did not decrease significantly after cessation of treatment. The eABR latency in BDNF-treated animals was longer than normal and comparable to that in deafened control animals. These morphological and functional findings demonstrate that neurotrophic intervention had a lasting effect, which is promising for future clinical application of neurotrophic factors in implanted human cochleae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.