Impedance control is a common framework for control of lower-limb prosthetic devices. This approach requires choosing many impedance controller parameters. In this paper, we show how to learn these parameters for lower-limb prostheses by observation of unimpaired human walkers. We validate our approach in simulation of a transfemoral amputee, and we demonstrate the performance of the learned parameters in a preliminary experiment with a lower-limb prosthetic device.
Lower-limb prosthesis provide a prime example of cyber-physical systems (CPSs) that interact with humans in a safety critical fashion, and therefore require the synergistic development of sensing, algorithms and controllers. With a view towards better understanding CPSs of this form, this paper presents a methodology for successfully translating nonlinear real-time optimization based controllers from bipedal robots to a novel custom built self-contained powered transfemoral prosthesis: AMPRO. To achieve this goal, we begin by collecting reference human locomotion data via Inertial measurement Units (IMUs). This data forms the basis for an optimization problem that generates virtual constraints, i.e., parametrized trajectories, for the prosthesis that provably yields walking in simulation. Leveraging methods that have proven successful in generating stable robotic locomotion, control Lyapunov function (CLF) based Quadratic Programs (QPs) are utilized to optimally track the resulting desired trajectories. The parameterization of the trajectories is determined through a combination of on-board sensing on the prosthesis together with IMU data, thereby coupling the actions of the user with the controller. Finally, impedance control is integrated into the QP yielding an optimization based control law that displays remarkable tracking and robustness, outperforming traditional PD and impedance control strategies. This is demonstrated experimentally on AMPRO through the implementation of the holistic sensing, algorithm and control framework, with the end result being stable and human-like walking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.