Classification and identification of different phases and the transitions between them is a central task in condensed matter physics. Machine learning, which has achieved dramatic success in a wide range of applications, holds the promise to bring unprecedented perspectives for this challenging task. However, despite the exciting progress made along this direction, the reliability of machine-learning approaches in experimental settings demands further investigation. Here, with the nitrogen-vacancy center platform, we report a proof-of-principle experimental demonstration of adversarial examples in learning topological phases. We show that the experimental noises are more likely to act as adversarial perturbations when a larger percentage of the input data are dropped or unavailable for the neural network-based classifiers. We experimentally implement adversarial examples which can deceive the phase classifier with a high confidence, while keeping the topological properties of the simulated Hopf insulators unchanged. Our results explicitly showcase the crucial vulnerability aspect of applying machine learning techniques in experiments to classify phases of matter, which can benefit future studies in this interdisciplinary field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.