Health support has been sought by the public from online social media after the outbreak of novel coronavirus disease 2019 (COVID-19). In addition to the physical symptoms caused by the virus, there are adverse impacts on psychological responses. Therefore, precisely capturing the public emotions becomes crucial to providing adequate support. By constructing a domain-specific COVID-19 public health emergency discrete emotion lexicon, we utilized one million COVID-19 theme texts from the Chinese online social platform Weibo to analyze social-emotional volatility. Based on computed emotional valence, we proposed a public emotional perception model that achieves: (1) targeting of public emotion abrupt time points using an LSTM-based attention encoder-decoder (LAED) mechanism for emotional time-series, and (2) backtracking of specific triggered causes of abnormal volatility in a cognitive emotional arousal path. Experimental results prove that our model provides a solid research basis for enhancing social-emotional security outcomes.
Classification and identification of different phases and the transitions between them is a central task in condensed matter physics. Machine learning, which has achieved dramatic success in a wide range of applications, holds the promise to bring unprecedented perspectives for this challenging task. However, despite the exciting progress made along this direction, the reliability of machine-learning approaches in experimental settings demands further investigation. Here, with the nitrogen-vacancy center platform, we report a proof-of-principle experimental demonstration of adversarial examples in learning topological phases. We show that the experimental noises are more likely to act as adversarial perturbations when a larger percentage of the input data are dropped or unavailable for the neural network-based classifiers. We experimentally implement adversarial examples which can deceive the phase classifier with a high confidence, while keeping the topological properties of the simulated Hopf insulators unchanged. Our results explicitly showcase the crucial vulnerability aspect of applying machine learning techniques in experiments to classify phases of matter, which can benefit future studies in this interdisciplinary field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.