Neutrophils are an important component of the innate immune system, and one of their defense mechanisms, neutrophil extracellular traps (NETs), is a hot topic of the current research. This study explored the effects of fumonisin B1 (FB1) on chicken neutrophil production of NETs and its possible molecular mechanism of action. Scanning electron microscopy and fluorescence microscopy were used to observe morphological changes in neutrophils, and a fluorescence microplate reader was used to detect reactive oxygen species (ROS) and extracellular DNA release from neutrophils. Quantitative PCR (qPCR) and western blot were used to determine the expression levels of selenoproteins. The results indicate that FB1 inhibited the zymosan-induced formation of NETs in chicken neutrophils by preventing ROS burst and histone H3 (H3) and neutrophil elastase (NE) release. Moreover, the mRNA expression levels of glutathione peroxidase (GPX), thioredoxin reductase (TXNRD), and deiodinase (DIO) were downregulated in the FB1 group. The protein expression levels of GPX1, GPX2, GPX3, DIO3, and TXNRD1 were consistent with the changes in their gene expressions, suggesting an abnormal selenoprotein expression in response to the toxic effects of FB1. Conversely, selenium (Se) supplementation reduced the toxic effects of FB1 and restored the NETs formation, indicating that Se can be used as a potential drug to prevent and control FB1 toxicity in livestock farming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.