This study analyzed data from 1995, 2005, and 2015 using mathematical calculations, spatial analysis, and a geographically weighted regression model. The results showed that from 1995 to 2015, the comprehensive regional development degree (RDD) of urban agglomeration in the middle of Jilin Province increased overall, with the average RDD increasing from 0.250 in 1995 to 0.323 in 2015. Especially in Changchun, a sub-provincial city, the RDD increased by nearly one-third, and the gap between this and other cities has been increasing. However, the ecosystem service value (ESV) decreased overall, with the average ESV decreasing from 108.3 in 1995 to 105.4 in 2015, and showed a strong spatial correlation. The maximum quantile in southeast–northwest direction was 1.712, with good homogeneity. The spatial influence coefficient of the RDD on the ESV showed a trend from positive to negative in the northwest–southeast direction. This value decreased continuously while the negative agglomeration area was gradually expanding, corresponding to the stressful effects of the RDD on ESV. The results of this study can provide a reference for urban planning and development as well as encourage reasonable regional spatial planning to ensure the sustainable development of urban agglomerations.
Urbanization is a complex process that covers a wide range of topics, of which population, industry and land urbanization are three important aspects. Jilin Province is an important agricultural province in China. The contradiction between population, industry and land urbanization is especially prominent here, and its coupling development is of great practical significance. In this paper, the coupling degree of population-industry-land urbanization in Jilin Province in 1990, 2000 and 2010 is measured by coupling mode. The spatial pattern of the coupling degree is analyzed by trend surface analysis and global and local spatial autocorrelation. The influence factors and their spatial differentiation are discussed using multiple linear regression (MLR) model and geographic weighted regression (GWR) model. The results show that: 1) the coupling degree of population-industry-land urbanization in Jilin Province is at a low level. Judging from the change of time scale, the urbanization of most research units is becoming more and more coordinated. From the comparison of spatial scales, there is significant spatial difference in the research units of different administrative levels. 2) Judging from the global change trend, the coupling degree of population-industry-land urbanization in the central region is higher than that in western and eastern regions. The coordination of urbanization in the central region is relatively good, and the distribution of the cold and hot spots is basically the same as that overall. 3) The spatial pattern of the coupling degree is related to the cold and hot spot distribution of the influence coefficient of urban population density and per capita urban construction land. The variation of the coupling degree spatial pattern is synchronous with the spatial change of the urban population density influence coefficient. 4) The degree of agglomeration of the urban population is the main factor promoting the coupling pattern of population-industry-land urbanization in Jilin Province, and the extent of its influence is gradually increasing. In addition, the level of city administrative, the efficiency of urban expansion and the capacity of market consumption also have an important influence on the coupling pattern.
Resource-based urban agglomerations often encounter greater challenges in the sustainable development of human settlements. The aim of this study is to propose an approach to the coordinated development of competitiveness by analyzing the interaction of human settlements competitiveness (HSC) in resource-based urban agglomerations. Through the compound evaluation model of HSC and urban network analysis, this study finds: 1) the HSC measure increased from 35.12 in 1990 to 52.15 in 2015 and showed a downward trend from 2015 to 2019, with an average value of 47.82 in 2019; 2) The change trend of the relevance network density is the same as that of the HSC, while the difference network density reaches the lowest value of 0.441 when the HSC is the highest, indicating that the HSC of the urban agglomerations has improved to a certain extent but is more unsustainable, and 3) Communities in the relevance network are obviously bounded by the borders of provinces or urban agglomerations, while the communities in the difference network are differentiated into two types: high-competitiveness and low-competitiveness. Using the theory of “co-opetition” to analyze the sustainable development path of resource-based urban agglomerations, the study believes that a coordination mechanism and a guarantee mechanism for benefit distribution should be established between urban agglomerations to curb local protectionism, and promote regional dislocation development. The development gradient level also should be established within the urban agglomeration to narrow the gap between HSC of cities, and innovative development should be the core of promoting industrial transformation and upgrading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.