Abstract. The study of network structure is pervasive in sociology, biology, computer science, and many other disciplines. One of the most important areas of network science is the algorithmic detection of cohesive groups of nodes called "communities". One popular approach to find communities is to maximize a quality function known as modularity to achieve some sort of optimal clustering of nodes. In this paper, we interpret the modularity function from a novel perspective: we reformulate modularity optimization as a minimization problem of an energy functional that consists of a total variation term and an 2 balance term. By employing numerical techniques from image processing and 1 compressive sensing-such as convex splitting and the Merriman-Bence-Osher (MBO) scheme-we develop a variational algorithm for the minimization problem. We present our computational results using both synthetic benchmark networks and real data.
Abstract. We focus on the multi-class segmentation problem using the piecewise constant Mumford-Shah model in a graph setting. After formulating a graph version of the Mumford-Shah energy, we propose an efficient algorithm called the MBO scheme using threshold dynamics. Theoretical analysis is developed and a Lyapunov functional is proven to decrease as the algorithm proceeds. Furthermore, to reduce the computational cost for large datasets, we incorporate the Nyström extension method which efficiently approximates eigenvectors of the graph Laplacian based on a small portion of the weight matrix. Finally, we implement the proposed method on the problem of chemical plume detection in hyper-spectral video data.
We introduce the French Street Name Signs (FSNS) Dataset consisting of more than a million images of street name signs cropped from Google Street View images of France. Each image contains several views of the same street name sign. Every image has normalized, title case folded ground-truth text as it would appear on a map. We believe that the FSNS dataset is large and complex enough to train a deep network of significant complexity to solve the street name extraction problem "end-to-end" or to explore the design trade-offs between a single complex engineered network and multiple sub-networks designed and trained to solve sub-problems. We present such an "end-to-end" network/graph for Tensor Flow and its results on the FSNS dataset. 1
INTRODUCTION: Patients with atrophic gastritis (AG) or gastric intestinal metaplasia (GIM) have elevated risk of gastric adenocarcinoma. Endoscopic screening and surveillance have been implemented in high incidence countries. The study aimed to evaluate the accuracy of a deep convolutional neural network (CNN) for simultaneous recognition of AG and GIM. METHODS: Archived endoscopic white light images with corresponding gastric biopsies were collected from 14 hospitals located in different regions of China. Corresponding images by anatomic sites containing AG, GIM, and chronic non-AG were categorized using pathology reports. The participants were randomly assigned (8:1:1) to the training cohort for developing the CNN model (TResNet), the validation cohort for fine-tuning, and the test cohort for evaluating the diagnostic accuracy. The area under the curve (AUC), sensitivity, specificity, and accuracy with 95% confidence interval (CI) were calculated. RESULTS: A total of 7,037 endoscopic images from 2,741 participants were used to develop the CNN for recognition of AG and/or GIM. The AUC for recognizing AG was 0.98 (95% CI 0.97–0.99) with sensitivity, specificity, and accuracy of 96.2% (95% CI 94.2%–97.6%), 96.4% (95% CI 94.8%–97.9%), and 96.4% (95% CI 94.4%–97.8%), respectively. The AUC for recognizing GIM was 0.99 (95% CI 0.98–1.00) with sensitivity, specificity, and accuracy of 97.9% (95% CI 96.2%–98.9%), 97.5% (95% CI 95.8%–98.6%), and 97.6% (95% CI 95.8%–98.6%), respectively. DISCUSSION: CNN using endoscopic white light images achieved high diagnostic accuracy in recognizing AG and GIM.
The ability to navigate from visual observations in unfamiliar environments is a core component of intelligent agents and an ongoing challenge for Deep Reinforcement Learning (RL). Street View can be a sensible testbed for such RL agents, because it provides real-world photographic imagery at ground level, with diverse street appearances; it has been made into an interactive environment called StreetLearn [27] and used for research on navigation. However, goal-driven street navigation agents have not so far been able to transfer to unseen areas without extensive retraining, and relying on simulation is not a scalable solution. Since aerial images are easily and globally accessible, we propose instead to train a multi-modal policy on ground and aerial views, then transfer the ground view policy to unseen (target) parts of the city by utilizing aerial view observations. Our core idea is to pair the ground view with an aerial view and to learn a joint policy that is transferable across views. We achieve this by learning a similar embedding space for both views, distilling the policy across views and dropping out visual modalities. We further reformulate the transfer learning paradigm into three stages: 1) cross-modal training, when the agent is initially trained on multiple city regions, 2) aerial view-only adaptation to a new area, when the agent is adapted to a held-out region using only the easily obtainable aerial view, and 3) ground view-only transfer, when the agent is tested on navigation tasks on unseen ground views, without aerial imagery. Experimental results suggest that the proposed cross-view policy learning enables better generalization of the agent and allows for more effective transfer to unseen environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.