Multiple models of human metabolism have been reconstructed, but each represents only a subset of our knowledge. Here we describe Recon 2, a community-driven, consensus ‘metabolic reconstruction’, which is the most comprehensive representation of human metabolism that is applicable to computational modeling. Compared with its predecessors, the reconstruction has improved topological and functional features, including ~2× more reactions and ~1.7× more unique metabolites. Using Recon 2 we predicted changes in metabolite biomarkers for 49 inborn errors of metabolism with 77% accuracy when compared to experimental data. Mapping metabolomic data and drug information onto Recon 2 demonstrates its potential for integrating and analyzing diverse data types. Using protein expression data, we automatically generated a compendium of 65 cell type–specific models, providing a basis for manual curation or investigation of cell-specific metabolic properties. Recon 2 will facilitate many future biomedical studies and is freely available at http://humanmetabolism.org/.
COnstraint-Based Reconstruction and Analysis (COBRA) provides a molecular mechanistic framework for integrative analysis of experimental data and quantitative prediction of physicochemically and biochemically feasible phenotypic states. The COBRA Toolbox is a comprehensive software suite of interoperable COBRA methods. It has found widespread applications in biology, biomedicine, and biotechnology because its functions can be flexibly combined to implement tailored COBRA protocols for any biochemical network. Version 3.0 includes new methods for quality controlled reconstruction, modelling, topological analysis, strain and experimental design, network visualisation as well as network integration of chemoinformatic, metabolomic, transcriptomic, proteomic, and thermochemical data. New multi-lingual code integration also enables an expansion in COBRA application scope via high-precision, high-performance, and nonlinear numerical optimisation solvers for multi-scale, multi-cellular and reaction kinetic modelling, respectively. This protocol can be adapted for the generation and analysis of a constraint-based model in a wide variety of molecular systems biology scenarios. This protocol is an update to the COBRA Toolbox 1.0 and 2.0. The COBRA Toolbox 3.0 provides an unparalleled depth of constraint-based reconstruction and analysis methods. ]); 61 | The MUST sets are the sets of reactions that must increase or decrease their flux in order to achieve the desired phenotype in the mutant strain. As shown in Figure 6, the first order MUST sets are MustU and MustL while second order MUST sets are denoted as MustUU, MustLL, and MustUL. After parameters and constraints are defined, the functions findMustL and findMustU are run to determine the mustU and mustL sets, respectively. Define an ID of the run with:Each time the MUST sets are determined, folders are generated to read inputs and store outputs, i.e., reports. These folders are located in the directory defined by the uniquely defined runID.62 | In order to find the first order MUST sets, constraints should be defined: >> constrOpt = struct('rxnList', {{'EX_gluc', 'R75', 'EX_suc'}}, 'values', [-100; 0; 155.5]); 63 | The first order MUST set MustL is determined by running: >> [mustLSet, pos_mustL] = findMustL(model, minFluxesW, maxFluxesW, ... 'constrOpt', constrOpt, 'runID', runID);If runID is set to 'TestoptForceL', a folder TestoptForceL is created, in which two additional folders InputsMustL and OutputsMustL are created. The InputsMustL folder contains all the inputs required to run the function findMustL, while the OutputsMustL folder contains the mustL set found and a report that summarises all the inputs and outputs. In order to maintain a chronological order of computational experiments, the report is timestamped.64 | Display the reactions that belong to the mustL set using: >> disp(mustLSet) 65 | The first order MUST set MustU is determined by running: >> [mustUSet, pos_mustU] = findMustU(model, minFluxesW, maxFluxesW, ... 'constrOpt', constrOpt, 'runID', runID);...
Standard Gibbs energies of reactions are increasingly being used in metabolic modeling for applying thermodynamic constraints on reaction rates, metabolite concentrations and kinetic parameters. The increasing scope and diversity of metabolic models has led scientists to look for genome-scale solutions that can estimate the standard Gibbs energy of all the reactions in metabolism. Group contribution methods greatly increase coverage, albeit at the price of decreased precision. We present here a way to combine the estimations of group contribution with the more accurate reactant contributions by decomposing each reaction into two parts and applying one of the methods on each of them. This method gives priority to the reactant contributions over group contributions while guaranteeing that all estimations will be consistent, i.e. will not violate the first law of thermodynamics. We show that there is a significant increase in the accuracy of our estimations compared to standard group contribution. Specifically, our cross-validation results show an 80% reduction in the median absolute residual for reactions that can be derived by reactant contributions only. We provide the full framework and source code for deriving estimates of standard reaction Gibbs energy, as well as confidence intervals, and believe this will facilitate the wide use of thermodynamic data for a better understanding of metabolism.
A multitude of factors contribute to complex diseases and can be measured with ‘omics’ methods. Databases facilitate data interpretation for underlying mechanisms. Here, we describe the Virtual Metabolic Human (VMH, www.vmh.life) database encapsulating current knowledge of human metabolism within five interlinked resources ‘Human metabolism’, ‘Gut microbiome’, ‘Disease’, ‘Nutrition’, and ‘ReconMaps’. The VMH captures 5180 unique metabolites, 17 730 unique reactions, 3695 human genes, 255 Mendelian diseases, 818 microbes, 632 685 microbial genes and 8790 food items. The VMH’s unique features are (i) the hosting of the metabolic reconstructions of human and gut microbes amenable for metabolic modeling; (ii) seven human metabolic maps for data visualization; (iii) a nutrition designer; (iv) a user-friendly webpage and application-programming interface to access its content; (v) user feedback option for community engagement and (vi) the connection of its entities to 57 other web resources. The VMH represents a novel, interdisciplinary database for data interpretation and hypothesis generation to the biomedical community.
SummaryIn constraint-based metabolic modelling, physical and biochemical constraints define a polyhedral convex set of feasible flux vectors. Uniform sampling of this set provides an unbiased characterization of the metabolic capabilities of a biochemical network. However, reliable uniform sampling of genome-scale biochemical networks is challenging due to their high dimensionality and inherent anisotropy. Here, we present an implementation of a new sampling algorithm, coordinate hit-and-run with rounding (CHRR). This algorithm is based on the provably efficient hit-and-run random walk and crucially uses a preprocessing step to round the anisotropic flux set. CHRR provably converges to a uniform stationary sampling distribution. We apply it to metabolic networks of increasing dimensionality. We show that it converges several times faster than a popular artificial centering hit-and-run algorithm, enabling reliable and tractable sampling of genome-scale biochemical networks.Availability and Implementation https://github.com/opencobra/cobratoolbox.Supplementary information Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.