This paper considers a modified Erlang loss system for cognitive wireless networks and related applications. A primary user has pre-emptive priority over secondary users, and the primary customer is lost if upon arrival all the channels are used by other primary users. Secondary users cognitively use idle channels, and they can stay (either in an infinite buffer or in an orbit) in cases where idle channels are not available upon arrival or they are interrupted by primary users. While the infinite buffer model represents the case with zero sensing time, the infinite orbit model represents the case with positive sensing time. We obtain an explicit stability condition for the cases where arrival processes of primary users and secondary users follow Poisson processes, and their service times follow two distinct arbitrary distributions. The stability condition is insensitive to the service time distributions and implies the maximal throughout of secondary users. Moreover, we extend the stability analysis to the system with outgoing calls. For a special case of exponential service time distributions, we analyze the buffered system in depth to show the effect of parameters on the delay performance and the mean number of interruptions of secondary users. Our simulations for distributions rather than exponential reveal that the mean number of terminations for secondary users is less sensitive to the service time distribution of primary users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.