This work investigated the thermoelectric properties of thin silicon membranes which have been decorated with high density of nanoscopic holes. These "holey silicon" (HS) structures were fabricated by either nanosphere or block-copolymer lithography, both of which are scalable for practical device application. By reducing the pitch of the hexagonal holey pattern down to 55 nm with 35% porosity, the thermal conductivity of HS is consistently reduced by two orders of magnitude and approaches the amorphous limit. With a value of ~0.4 at room temperature, the thermoelectric performance of HS is comparable with the best value recorded in silicon nanowire system.
Block copolymer patterned holey silicon (HS) was successfully integrated into a microdevice for simultaneous measurements of Seebeck coefficient, electrical conductivity, and thermal conductivity of the same HS microribbon. These fully integrated HS microdevices provided excellent platforms for the systematic investigation of thermoelectric transport properties tailored by the dimensions of the periodic hole array, that is, neck and pitch size, and the doping concentrations. Specifically, thermoelectric transport properties of HS with a neck size in the range of 16-34 nm and a fixed pitch size of 60 nm were characterized, and a clear neck size dependency was shown in the doping range of 3.1 × 10(18) to 6.5 × 10(19) cm(-3). At 300 K, thermal conductivity as low as 1.8 ± 0.2 W/mK was found in HS with a neck size of 16 nm, while optimized zT values were shown in HS with a neck size of 24 nm. The controllable effects of holey array dimensions and doping concentrations on HS thermoelectric performance could aid in improving the understanding of the phonon scattering process in a holey structure and also in facilitating the development of silicon-based thermoelectric devices.
The characteristics of a hybrid p-n junction consisting of the hole-conducting polymer poly(3,4-ethylene-dioxythiophene)-poly(styrene-sulfonate) (PEDOT/PSS) and n-ZnO nanorods grown on an n-GaN layer on sapphire are reported. Spin coating of polystyrene was used to electrically isolate neighboring nanorods and a top layer of transparent conducting indium tin oxide (ITO) was used to contact the PEDOT/PSS. Multiple peaks are observed in the electroluminescence spectrum from the structure under forward bias, including ZnO band edge emission at ∼383nm as well as peaks at 430, 640, and 748nm. The threshold bias for UV light emission was <3V, corresponding to a current density of 6.08Acm−2 through the PEDOT/PSS at 3V.
Thin, uniform, single-walled carbon nanotube films, made by a simple filtration process, subsequently coated with palladium, are shown to be promising detectors of hydrogen. The films detected hydrogen with relative responses of 20% at 100 ppm and 40% at 500 ppm concentrations. Most of the initial film conductance was recovered within 30 s by exposing the samples to air. This quick and easy recoverability make the Pd-coated nanotubes suitable for practical applications in room temperature hydrogen sensing while consuming only approximately 0.25 mW power. The film fabrication process provides highly reproducible control over the film thickness; an important ingredient for commercial production. In the course of this research strong evidence was obtained indicating that sputter deposition of metal onto the nanotubes, even under very low power, short exposure time conditions, does damage to the nanotubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.