Encapsulation of biomacromolecules in metal− organic frameworks (MOFs) can preserve biological functionality in harsh environments. Despite the success of this approach, termed biomimietic mineralization, limited consideration has been given to the chemistry of the MOF coating. Here, we show that enzymes encapsulated within hydrophilic MAF-7 or ZIF-90 retain enzymatic activity upon encapsulation and when exposed to high temperatures, denaturing or proteolytic agents, and organic solvents, whereas hydrophobic ZIF-8 affords inactive catalase and negligible protection to urease.
The new agreement specifically addresses what authors can do with different versions of their manuscripte.g. use in theses and collections, teaching and training, conference presentations, sharing with colleagues, and posting on websites and repositories. The terms under which these uses can occur are clearly identified to prevent misunderstandings that could jeopardize final publication of a manuscript (Section II, Permitted Uses by Authors).
Inorganic functionalization of metal-organic frameworks (MOFs), such as incorporation of multiple inorganic building blocks with distinct metals into one structure and further modulation of the metal charges, endows the porous materials with significant properties toward their applications in catalysis. In this work, by an exploration of the role of 4-pyrazolecarboxylic acid (HPyC) in the formation of trinuclear copper pyrazolate as a metalloligand in situ, four new MOFs with multiple components in order were constructed through one-pot synthesis. This metalloligand strategy provides multicomponent MOFs with new topologies (tub for FDM-4 and tap for FDM-5) and is also compatible with a second organic linker for cooperative construction of complex MOFs (1,4-benzenedicarboxylic acid for FDM-6 and 2,6-naphthalenedicarboxylic acid for FDM-7). The component multiplicity of these MOFs originates from PyC's ability to separate Cu and Zn on the basis of their differentiated binding affinities toward pyrazolate and carboxylate. These MOFs feature reversible and facile redox transformations between Cu(PyC) and Cu(μ-OH)(PyC)(OH) without altering the connecting geometries of the units, thus further contributing to the significant catalytic activities in the oxidation of CO and aromatic alcohols and the decomposition of HO. This study on programming multiple inorganic components into one framework and modulating their electronic structures is an example of functionalizing the inorganic units of MOFs with a high degree of control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.