Automated deployment and run-time management of microservices-based applications in cloud computing environments is relatively well studied with several mature solutions. However, managing such applications and tasks in the cloud-to-edge continuum is far from trivial, with no robust, production-level solutions currently available. This paper presents our first attempt to extend an application-level cloud orchestration framework called MiCADO to utilise edge and fog worker nodes. The paper illustrates how MiCADO-Edge can automatically deploy complex sets of interconnected microservices in such multi-layered cloud-to-edge environments. Additionally, it shows how monitoring information can be collected from such services and how complex, user- defined run-time management policies can be enforced on application components running at any layer of the architecture. The implemented solution is demonstrated and evaluated using two realistic case studies from the areas of video processing and secure healthcare data analysis.
The potential of cloud computing is gaining significant interest in Modeling & Simulation (M&S). The underlying concept of using computing power as a utility is very attractive to users that can access stateof-the-art hardware and software without capital investment. Moreover, the cloud computing characteristics of rapid elasticity and the ability to scale up or down according to workload make it very attractive to numerous applications including M&S. Research and development work typically focuses on the implementation of cloud-based systems supporting M&S as a Service (MSaaS). Such systems are typically composed of a supply chain of technology services. How is the payment collected from the enduser and distributed to the stakeholders in the supply chain? We discuss the business aspects of developing a cloud platform for various M&S applications. Business models from the perspectives of the stakeholders involved in providing and using MSaaS and cloud computing are investigated and presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.