The central melanocortin system plays a fundamental role in the control of feeding and body weight. Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC) also regulate overall glucose homeostasis via insulin-dependent and -independent pathways. Here, we report that a subset of ARC POMC neurons innervate the liver via preganglionic parasympathetic acetylcholine (ACh) neurons in the dorsal motor nucleus of the vagus (DMV). Optogenetic stimulation of this liver-projecting melanocortinergic pathway elevates blood glucose levels that is associated with increased expression of hepatic gluconeogenic enzymes in female and male mice. Pharmacological blockade and knockdown of the melanocortin-4 receptor gene in the DMV abolish this stimulation-induced effect. Activation of melanocortin-4 receptors inhibits DMV cholinergic neurons and optogenetic inhibition of liver-projecting parasympathetic cholinergic fibers increases blood glucose levels. This elevated blood glucose is not due to altered pancreatic hormone release. Interestingly, insulin-induced hypoglycemia increases ARC POMC neuron activity. Hence, this liver-projecting melanocortinergic circuit that we identified may play a critical role in the counterregulatory response to hypoglycemia.
Pilocarpine-induced rat epilepsy model is an established animal model that mimics medial temporal lobe epilepsy in humans. The purpose of this study was to investigate neuroimaging abnormalities in various stages of epileptogenesis and to correlate them with seizure severity in pilocarpine-induced rat epilepsy model. Fifty male Sprague-Dawley rats were subject to continuous video and electroencephalographic monitoring after inducing status epilepticus (SE) and seizure severity was estimated by frequency and total durations of class 3 to 5 spontaneous recurrent seizures (SRS) by modified Racine's classification. The 7.0 Tesla magnetic resonance imaging (MRI) with high resolution flurodeoxyglucose positron emission tomography (FDG-PET) was performed at 3 hours, 1, 3, 7 days and 4 weeks after the initial insult. The initial SRS was observed 9.7±1.3 days after the pilocarpine injection. MRI revealed an abnormal T2 signal change with swelling in both hippocampi and amygdala in acute (day 1 after injection) and latent phases (days 3 and 7), in association with PET hypometabolism in these areas. Interestingly, the mean frequency of class 3 to 5 SRS was positively correlated with abnormal T2 signals in hippocampal area at 3 days. SRS duration became longer with more decreased glucose metabolism in both hippocampi and amygdala at 7 days after pilocarpine injection. This study indicates that development and severity of SRS at chronic phase could be closely related with structural and functional changes in hippocampus during the latent period, a pre-epileptic stage.
Interscapular brown adipose tissue (BAT) has the capability to take up glucose from the circulation. Despite the important role of BAT in the control of glucose homeostasis, the metabolic fate and function of glucose in BAT remain elusive as there is clear dissociation between glucose uptake and BAT thermogenesis. Interestingly, intracellular glycolysis and lactate production appear to be required for glucose uptake by BAT. Here, we specifically examine whether activation of lactate receptors in BAT plays a key role in regulating glucose homeostasis in mice fed a high-fat diet (HFD). When C57BL/6J mice are given HFD for 5 weeks at 28˚C, male, but not female, mice gain body weight and develop hyperglycemia. Importantly, high-fat feeding upregulates expression of the lactate receptor hydroxycarboxylic acid receptor 1 (HCAR1) in female C57BL/6J mice, whereas male C57BL/6J mice show reduced HCAR1 expression in BAT. Treatment with the HCAR1 agonist lowers systemic glucose levels in male DIO mice. This reduction is associated with increased glucose uptake in BAT. Therefore, our results suggest that HCAR1 in BAT may contribute to the development of hyperglycemia in male C57BL/6J DIO mice.
This study was performed to investigate the sedative-hypnotic activity of γ-aminobutyric acid (GABA)-enriched fermented marine organisms (FMO), including sea tangle (FST) and oyster (FO) by Lactobacillus brevis BJ20 (L. brevis BJ20). FST and FO were tested for their binding activity of the GABAA-benzodiazepine and 5-HT2C receptors, which are well-known molecular targets for sleep aids. We also measured the sleep latency and sleep duration during pentobarbital-induced sleep in mice after oral administration of FST and FO. In GABAA and 5-HT2C receptor binding assays, FST displayed an effective concentration-dependent binding affinity to GABAA receptor, similar to the binding affinity to 5-HT2C receptor. FO exhibited higher affinity to 5-HT2C receptor, compared with the GABAA receptor. The oral administration of FST and FO produced a dose-dependent decrease in sleep latency and increase in sleep duration in pentobarbital-induced hypnosis. The data demonstrate that FST and FO possess sedative-hypnotic activity possibly by modulating GABAA and 5-HT2C receptors. We propose that FST and FO might be effective agents for treatment of insomnia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.