Atmospheric-pressure Ar plasma jets are known to be detrimental to Cordyceps pruinosa spores. However, it is not clear what kinds of reactive species are more effective with regard to fungal cell death. Herein, we study which reactive species plays pivotal roles in the death of fungal spores using an electric shock-free, atmospheric-pressure air plasma jet, simply called soft plasma jet. Plasma treatment significantly reduced the spore viability and damaged fungal DNA. As observed from the circular dichroism spectra, scanning electron microscope images, and flow cytometric measurements, cell wall integrity was decreased by reactive oxygen and nitrogen species (RONS) from the plasma itself and the plasma-activated water. Consequently, degradation of the spore cell wall allows RONS from the plasma to reach the intracellular components. Such plasma-induced intracellular RONS can attack spore DNA and other intracellular components, as confirmed by electrophoresis analysis and phosphorylated histone measurement. In addition, weakening of the spore cell wall allowed for the loss of intracellular components, which can lead to cell death. Plasma radicals were investigated by measuring the optical emission spectrum of the soft plasma jet, and intracellular reactive oxygen species were confirmed by measuring the fluorescence of 2′, 7′-dichlorodihydrofluorescein-diacetate (H2DCF-DA)-stained spores. The soft plasma jet generated considerable amounts of H2O2 and NOx but a very small number of OH radicals as compared to the atmospheric-pressure Arplasma jet; this indicates that plasma-induced long-lived reactive species (H2O2 and NOx) play an important role in the weakening of spore cell walls and cell death.
Plasma-activated water (PAW) has emerged as a platform for sterilizing fungal pathogens. In this study, we investigated the influence of PAW on black melanized spores of Aspergillus brasiliensis to explore the mechanism of fungal spore inactivation. PAW was prepared by activating deionized water with a nonthermal atmospheric pressure air plasma jet (soft plasma jet). The concentrations of H2O2 and NOx in the PAW treated by the soft plasma jet for 3 min were 50 μM and 1.8 mM, respectively, and the pH of the PAW was 3.10. The reactive oxygen and nitrogen species (RONS) in the PAW increased with longer plasma activation time. After being treated for 30 min in the PAW with a plasma activation time of 3 min, the spore viability dramatically dropped to 15%. The viabilities of 0.3% H2O2- and 0.3% HNO3-treated spores were 22% and 42%, respectively. The breakage of the spore cell wall by the PAW was revealed in scanning electron microscope images and flow cytometry measurements. Disruption of cell wall integrity provides a path for intracellular components to escape and RONS of the PAW can attack intracellular components directly. Degradation of high molecular genomic DNA was also observed by agarose gel electrophoresis. These results suggest that long-lived reactive species generated in the PAW play an important role in the inactivation of melanized fungal spores. Consequently, PAW produced by a soft plasma jet can be applied to sterilize bioprotective walled fungal spores in a relatively large volume.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.