Pectobacterium and Dickeya spp. are related broad-host-range entero-bacterial pathogens of angiosperms. A review of the literature shows that these genera each cause disease in species from at least 35% of angiosperm plant orders. The known host ranges of these pathogens partially overlap and, together, these two genera are pathogens of species from 50% of angiosperm plant orders. Notably, there are no reported hosts for either genus in the eudicots clade and no reported Dickeya hosts in the magnoliids or eurosids II clades, although Pectobacterium spp. are pathogens of at least one plant species in the magnoliids and at least one in each of the three eurosids II plant orders. In addition, Dickeya but not Pectobacterium spp. have been reported on a host in the rosids clade and, unlike Pectobacterium spp., have been reported on many Poales species. Natural disease among nonangiosperms has not been reported for either genus. Phylogenetic analyses of sequences concatenated from regions of seven housekeeping genes (acnA, gapA, icdA, mdh, mtlD, pgi, and proA) from representatives of these genera demonstrated that Dickeya spp. and the related tree pathogens, the genus Brenneria, are more diverse than Pectobacterium spp. and that the Pectobacterium strains can be divided into at least five distinct clades, three of which contain strains from multiple host plants.
The aim of this study was to determine the fatty acid (FA) composition of breast milk, and its association with mothers' FA intake. Milk samples were obtained from 238 healthy lactating women who volunteered to participate in the Human Milk Micronutrients Analysis Research. Dietary intake during lactation was assessed using a 3-d food record, and fat content and FA composition of the breast milk samples were analysed by IR spectrometry using MilkoScan FT2 and GC flame ionisation detector, respectively. The fat content was 3·31 (sd 1·41) g/100 ml breast milk. The concentrations of arachidonic acid (20 : 4 n-6), EPA (20 : 5 n-3) and DHA (22 : 6 n-3) in breast milk were 0·48 (sd 0·13), 0·15 (sd 0·12) and 0·67 (sd 0·47) % of total FA, respectively. Fat content and FA composition of breast milk were associated with maternal age, BMI, supplement use and infant age. Dietary intakes of EPA, DHA, n-3 FA, n-6 FA, SFA and PUFA were positively correlated with the corresponding FA in the milk samples. FA levels in breast milk and maternal diet are highly correlated. Further studies are warranted to explore factors that may be associated with changes in FA composition in human milk.
Background: Virulence of pathogenic bacteria is often determined by their ability to adapt to stress. Results: The Brucella abortus general stress response (GSR) system is required for chronic mammalian infection and is regulated by phosphorylation and proteolysis. Conclusion: The B. abortus GSR signaling pathway has multiple layers of post-translational control and is a determinant of chronic infection. Significance: This study provides new, molecular level insight into chronic Brucella infection.
Pectobacterium species are enterobacterial plant-pathogenic bacteria that cause soft rot disease in diverse plant species. Previous epidemiological studies of Pectobacterium species have suffered from an inability to identify most isolates to the species or subspecies level. We used three previously described DNA-based methods, 16S-23S intergenic transcribed spacer PCR-restriction fragment length polymorphism analysis, multilocus sequence analysis (MLSA), and pulsed-field gel electrophoresis, to examine isolates from diseased stems and tubers and found that MLSA provided the most reliable classification of isolates. We found that strains belonging to at least two Pectobacterium clades were present in each field examined, although representatives of only three of five Pectobacterium clades were isolated. Hypersensitive response and DNA hybridization assays revealed that strains of both Pectobacterium carotovorum and Pectobacterium wasabiae lack a type III secretion system (T3SS). Two of the T3SS-deficient strains assayed lack genes adjacent to the T3SS gene cluster, suggesting that multiple deletions occurred in Pectobacterium strains in this locus, and all strains appear to have only six rRNA operons instead of the seven operons typically found in Pectobacterium strains. The virulence of most of the T3SS-deficient strains was similar to that of T3SS-encoding strains in stems and tubers.The genus Pectobacterium (formerly Erwinia) contains both narrow-and broad-host-range bacterial plant pathogens that cause soft rot, stem rot, wilt, and blackleg in species belonging to over 35% of plant orders (20). Four Pectobacterium species have been described: Pectobacterium atrosepticum, Pectobacterium betavasculorum, Pectobacterium carotovorum, and Pectobacterium wasabiae (9). The recently described organism P. carotovorum subsp. brasiliensis is genetically distinct from previously described Pectobacterium taxa; approximately 82% of its genes are shared with P. atrosepticum, and 84% of its genes are shared with P. carotovorum subsp. carotovorum, while 13% of its genes are found in neither P. atrosepticum nor P. carotovorum subsp. carotovorum (7,10,20). To date, only P. carotovorum subsp. carotovorum and P. atrosepticum have been reported to occur in the same field (14, 21). P. carotovorum subsp. carotovorum is found worldwide, and P. atrosepticum is found in cool climates; while P. carotovorum subsp. brasiliensis has been found only in Brazil, Israel, and the United States, it is likely to have a wider distribution (20). Compared to the ecology and genetics of P. carotovorum subsp. carotovorum and P. atrosepticum, little is known about the ecology and genetics of P. betavasculorum, P. wasabiae, or P. carotovorum subsp. brasiliensis.Pectobacterium strains isolated from potato are diverse based on serology, genome structure, and fatty acid composition (5, 35). Previous epidemiological studies of pectolytic Enterobacteriaceae were complicated by the diversity of this group and the lack of tools capable of placing all isolates ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.