An assessment of burn depth is a key step in guiding the treatment of patients who have sustained thermal injuries. Polarization-sensitive optical coherence tomography (PS-OCT) might eventually provide the physician with a quantitative estimate of actual burn depth. Burns of various depths were induced by contacting rat skin with a brass rod preheated to 75 degrees C for 5, 15, or 30 s. Thermal injury denatured the collagen in the skin, and PS-OCT imaged the resulting reduction of birefringence through the depth-resolved changes in the polarization state of light propagated and reflected from the sample. Stokes vectors were calculated for each point in the PS-OCT images and the reduction in the rate of phase retardation between two orthogonal polarizations of light (deg/microm) was found to show a consistent trend with burn exposure time. PS-OCT is a noninvasive technique with potential to give the physician the information needed to formulate an optimal treatment plan for burn patients.
The drawbacks of conventional drug administration include repeated administration, non-specific biodistribution in the body’s systems, the long-term unsustainability of drug molecules, and high global cytotoxicity, posing a challenge for the efficient treatment of chronic diseases that require varying drug dosages over time for optimal therapeutic efficacy. Most controlled-release methods encapsulate drug molecules in biodegradable materials that dissolve over time to release the drug, making it difficult to deliver drugs on a schedule. To address these limitations, we developed a magneto-, opto-stimuli responsive drug delivery system based on functionalized electrospun nanofibers loaded with superparamagnetic iron oxide nanoparticles (SPIONs). We exploited the Néel relaxation effect of SPIONs, where heat generated from vibrating SPIONs under exogenously applied magnetic fields or laser illumination induced structural changes of the thermo-sensitive nanofibers that encapsulate the particles. We showed that this structural change of nanofibers is the governing factor in controlling the release of dye molecules, used as a model drug and co-encapsulated within the nanofibers. We also showed that the degree of nanofiber structural change depends on SPION loading and duration of stimulation, demonstrating the tunability of the drug release profile. Overall, we demonstrated the potential of SPION-embedded thermoplastic nanofibers as an attractive platform for on-demand drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.