Sparassis crispa and Phellinus linteus are edible/medicinal mushrooms that have remarkably high contents of beta-(1-->3)-D-glucan, which acts as a biological response modifier, but difficulty in cultivating the fruiting bodies and extraction of beta-D-glucan have restricted detailed studies. Therefore, a novel process for nanoparticle extraction of Sparan, the beta-D-glucan from Sparassis crispa, and Phellin, the beta-D-glucan from Phellinus linteus, has been investigated using insoluble tungsten carbide as a model for nanoknife technology. This is the first report showing that the nanoknife method results in high yields of Sparan (70.2%) and Phellin (65.2%) with an average particle size of 150 and 390 nm, respectively. The extracted Sparan with beta-(1-->3) linkages showed a remarkably high water solubility of 90% even after 10 min of incubation at room temperature. Therefore, it is likely that this nanoknife method could be used to produce beta-D-glucan for food, cosmetic, and pharmaceutical industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.