The use of object detection algorithms is becoming increasingly important in autonomous vehicles, and object detection at high accuracy and a fast inference speed is essential for safe autonomous driving. A false positive (FP) from a false localization during autonomous driving can lead to fatal accidents and hinder safe and efficient driving. Therefore, a detection algorithm that can cope with mislocalizations is required in autonomous driving applications. This paper proposes a method for improving the detection accuracy while supporting a real-time operation by modeling the bounding box (bbox) of YOLOv3, which is the most representative of one-stage detectors, with a Gaussian parameter and redesigning the loss function. In addition, this paper proposes a method for predicting the localization uncertainty that indicates the reliability of bbox. By using the predicted localization uncertainty during the detection process, the proposed schemes can significantly reduce the FP and increase the true positive (TP), thereby improving the accuracy. Compared to a conventional YOLOv3, the proposed algorithm, Gaussian YOLOv3, improves the mean average precision (mAP) by 3.09 and 3.5 on the KITTI and Berkeley deep drive (BDD) datasets, respectively. Nevertheless, the proposed algorithm is capable of real-time detection at faster than 42 frames per second (fps) and shows a higher accuracy than previous approaches with a similar fps. Therefore, the proposed algorithm is the most suitable for autonomous driving applications.
In this paper, the Lorentz transformation of entangled Bell states seen by a moving observer is studied. The calculated Bell observable for 4 joint measurements turns out to give a universal value,, whereâ,b are the relativistic spin observables derived from the Pauli-Lubanski pseudo vector and β = v c . We found that the degree of violation of the Bell's inequality is decreasing with increasing velocity of the observer and the Bell's inequality is satisfied in the ultra-relativistic limit where the boost speed reaches the speed of light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.