The chemotherapeutic use of cisplatin is limited by its severe side effects. In this study, by conducting different omics data analyses, we demonstrated that cisplatin induces cell death in a proximal tubular cell line by suppressing glycolysis- and tricarboxylic acid (TCA)/mitochondria-related genes. Furthermore, analysis of the urine from cisplatin-treated rats revealed the lower expression levels of enzymes involved in glycolysis, TCA cycle, and genes related to mitochondrial stability and confirmed the cisplatin-related metabolic abnormalities. Additionally, an increase in the level of p53, which directly inhibits glycolysis, has been observed. Inhibition of p53 restored glycolysis and significantly reduced the rate of cell death at 24 h and 48 h due to p53 inhibition. The foremost reason of cisplatin-related cytotoxicity has been correlated to the generation of mitochondrial reactive oxygen species (ROS) that influence multiple pathways. Abnormalities in these pathways resulted in the collapse of mitochondrial energy production, which in turn sensitized the cells to death. The quenching of ROS led to the amelioration of the affected pathways. Considering these observations, it can be concluded that there is a significant correlation between cisplatin and metabolic dysfunctions involving mROS as the major player.
The contribution of miRNA to the pathogenesis of acute kidney injury (AKI) is not well understood. Here we evaluated an integrative network of miRNAs and mRNA data to discover a possible master regulator of AKI. Microarray analyses of the kidneys of mice treated with cisplatin were used to extract putative miRNAs that cause renal injury. Of them, miR-122 was mostly downregulated by cisplatin, whereas miR-34a was upregulated. A network integrating dysregulated miRNAs and altered mRNA expression along with target prediction enabled us to identify Foxo3 as a core protein to activate p53. The miR-122 inhibited Foxo3 translation as assessed using an miR mimic, an inhibitor, and a Foxo3 3'-UTR reporter. In a mouse model, Foxo3 levels paralleled the degree of tubular injury. The role of decreased miR-122 in inducing Foxo3 during AKI was strengthened by the ability of the miR-122 mimic or inhibitor to replicate results. Increase in miR-34a also promoted the acetylation of Foxo3 by repressing Sirt1. Consistently, cisplatin facilitated the binding of Foxo3 and p53 for activation, which depended not only on decreased miR-122 but also on increased miR-34a. Other nephrotoxicants had similar effects. Among targets of p53, Phlda3 was robustly induced by cisplatin, causing tubular injury. Consistently, treatment with miR mimics and/or inhibitors, or with Foxo3 and Phlda3 siRNAs, modulated apoptosis. Thus, our results uncovered an miR integrative network regulating toxicant-induced AKI and identified Foxo3 as a bridge molecule to the p53 pathway.
User safety is one of the most critical issues for the successful implementation of lithium ion batteries (LIBs) in electric vehicles and their further expansion in large-scale energy storage systems. Herein, we propose a novel approach to realize self-extinguishing capability of LIBs for effective safety improvement by integrating temperature-responsive microcapsules containing a fire-extinguishing agent. The microcapsules are designed to release an extinguisher agent upon increased internal temperature of an LIB, resulting in rapid heat absorption through an in situ endothermic reaction and suppression of further temperature rise and undesirable thermal runaway. In a standard nail penetration test, the temperature rise is reduced by 74% without compromising electrochemical performances. It is anticipated that on the strengths of excellent scalability, simplicity, and cost-effectiveness, this novel strategy can be extensively applied to various high energy-density devices to ensure human safety.
Necrosis, unregulated cell death, is characterized by plasma membrane rupture as well as nuclear and cellular swelling. However, it has recently been reported that necrosis is a regulated form of cell death mediated by poly-(ADP-ribose) polymerase 1 (PARP1). PARP1 is thought to mediate necrosis by inducing DNA damage, although this remains unconfirmed. In this study, we examined the mechanisms of PARP1-mediated necrosis following doxorubicin (DOX)-induced DNA damage in human kidney proximal tubular (HK-2) cells. DOX initiated DNA damage response (DDR) and upregulated PARP1 and p53 expression, resulting in morphological changes similar to those observed during necrosis. Additionally, DOX induced mitochondrial hyper-activation, as evidenced by increased mitochondrial respiration and cytosolic ATP (cATP) production. However, DOX affected mitochondrial mass. DOX-induced DNA damage, cytosolic reactive oxygen species (cROS) generation, and mitochondrial hyper-activation decreased in cells with inhibited PARP1 expression, while generation of nitric oxide (NO) and mitochondrial ROS (mROS) remained unaffected. Moreover, DOX-induced DNA damage, cell cycle changes, and oxidative stress were not affected by p53 inhibition. These findings suggest that DNA damage induced necrosis through a PARP1-dependent and p53-independent pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.