In this work, silver nanowires (AgNWs) printed on a polyethylene terephthalate substrate using a bar coater were welded via selective wavelength plasmonic flash light irradiation. To achieve high electrical conductivity and transparent characteristics, the wavelength of the flash white light was selectively chosen and irradiated by using high-pass, low-pass, and band-pass filters. The flash white light irradiation conditions such as on-time, off-time, and number of pulses were also optimized. The wavelength range (400-500 nm) corresponding to the plasmonic wavelength of the AgNW could efficiently weld the AgNW films and enhance its conductivity. To carry out in-depth study of the welding phenomena with respect to wavelength, a multiphysics COMSOL simulation was conducted. The welded AgNW films under selective plasmonic flash light welding conditions showed the lowest sheet resistance (51.275 Ω/sq) and noteworthy transmittance (95.3%). Finally, the AgNW film, which was welded by selective wavelength plasmonic flash light with optical filters, was successfully used to make a large area transparent heat film and dye-sensitized solar cells showing superior performances.
In this work, multiwalled carbon nanotubes (MWNTs) were employed to improve the conductivity and fatigue resistance of flash light sintered copper nanoparticle (NP) ink films. The effect of CNT weight fraction on the flash light sintering and the fatigue characteristics of Cu NP/CNT composite films were investigated. The effect of carbon nanotube length was also studied with regard to enhancing the conductivity and fatigue resistance of flash light sintered Cu NP/CNT composite films. The flash light irradiation energy was optimized to obtain high conductivity Cu NP/CNT composite films. Cu NP/CNT composite films fabricated via optimized flash light irradiation had the lowest resistivity (7.86 μΩ·cm), which was only 4.6 times higher than that of bulk Cu films (1.68 μΩ·cm). It was also demonstrated that Cu NP/CNT composite films had better durability and environmental stability than those of Cu NPs only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.